Organosubstituierte 1,6-Dioxa-2-sila-5-bora-3-cycloalkene – Herstellung und Charakterisierung¹⁾

Roland Köster^{a*}, Günter Seidel^a, Roland Boese^b und Bernd Wrackmeyer^{c*}

Max-Planck-Institut für Kohlenforschung^a, Kaiser-Wilhelm-Platz 1, D-4330 Mülheim an der Ruhr

Institut für Anorganische Chemie der Universität Essen^b, Universitätsstraße 5-7, D-4300 Essen

Laboratorium für Anorganische Chemie der Universität Bayreuth^c, Universitätsstraße 30, D-8580 Bayreuth

Eingegangen am 29. November 1989

Key Words: 1,2,5-Azasilaboroles, organo-2,5-dihydro- / Dihydroxyalkanes(arenes) / 1,6-Dioxa-2-sila-5-bora-3-cycloalkenes / Regio- and stereoisomers / Metathesis, BO

Organosubstituted 1,6-Dioxa-2-sila-5-bora-3-cycloalkenes – Preparation and Characterisation¹⁾

The cis-alkenes ROSi(CH₃)₂C(R) = C(C₂H₅)B(C₂H₅)OR (R = CH₃: 11; C₂H₅: 12; C₆H₅: 13) are prepared from CH₃NSi(CH₃)₂C(R) = C(C₂H₅)BC₂H₅ [R = CH₃: A; R = C(CH₃) = CH₂: B] with the monohydroxy compounds ROH (R = CH₃, C₂H₅, C₆H₅). A or B react with aliphatic dihydroxy compounds HO - R' - OH [R' = -CH₂CH₂-: 1; -CH(CH₃)CH₂-: 2; -CH(CH₃)-CH(CH₃)-: 3; -C(CH₃)₂C(CH₃)₂-: 4; -(CH₂)₃-: 5; -(CH₂)₄-:6] to give 8-, 9-, and 10-membered ring compounds OSi(CH₃)₂C(R) = C(C₂H₅)OR' [15 a, b, 16/16', meso/rac-17 a, p-17 a, b, 18, 19, (20)_n]. A is initially cleaved at the SiN bond

Die organosubstituierten 2,5-Dihydro-1,2,5-azasilaborole A und B reagieren mit primären Aminen unter Substitution der Methylamin-Gruppierung zu ein- bzw. zweikernigen Verbindungen des Typs I^{2} . Mit Wasser erhält man aus A und B unter NCH₃/O-Substitution die organosubstituierten 2,5-Dihydro-1,2,5-oxasilaborole II^{3} .

with formation of 14. Compound 15a crystallises as the 16-membered $(15a)_2$ (X-ray structure analysis). The aromatic dihydroxy compounds catechol (7), resorcinol (8), 2,3-dihydroxynaphthalene (9), 1,8-dihydroxynaphthalene (10) react with A to form 21 to 24, but mainly by protolytic BC_{viny1} fission to give the 2,5-dihydro-1,2,3-dioxaboroles (e.g. 7 i_1 , 9 i_1 , 10 i_1) and the acyclic boron-free compounds 7 i_3 , 9 i_3 , 10 i_3 or the dyotropic rearranged isomers 7 i'_3 , 9 i'_3 , 10 i'_3 . The MS and NMR (¹H, ¹¹B, ¹³C, ²⁹Si) data of the new compounds are discussed.

In vorliegender Arbeit beschreiben wir das Verhalten der Verbindung A gegenüber den Dihydroxyalkanen 1 bis 6 sowie den Dihydroxyarenen 7 bis 10. Verbindung B haben wir außerdem mit den Glykol-Verbindungen 1 und D-3 umgesetzt. Der cis-SiC=CB-Baustein der Verbindungen A und B soll mit den Alkan- bzw. Arendioxy-Gruppierungen verknüpft werden, um – falls keine irreversiblen BC_{vinyl}-Spaltungen erfolgen – alkylsubstituierte 1,6-Dioxa-2-sila-5bora-3-cycloalkene präparativ zugänglich zu machen. Achtbis zehngliedrige Heterocyclen mit eingebauter *cis*-

Chem. Ber. 123 (1990) 1013-1028 © VCH Verlagsgesellschaft mbH, D-6940 Weinheim, 1990 0009-2940/90/0505-1013 \$ 02.50/0

SiC = CB-Gruppierung sind bisher nicht bekannt. Lediglich vielgliedrige Ringverbindungen mit *cis*-SiC = CSi-Gruppierungen wurden erst kürzlich beschrieben⁴).

An den Ringverbindungen aus cis-SiC = CB- und Alkan-(Aren)diyl-Kette mit zwei verbindenden Sauerstoff-Atomen sind wir u.a. wegen der noch unbekannten transannularen Atom-Wechselwirkungen in Abhängigkeit von Ringgröße und Ringsubstituenten interessiert. Wir haben daher auch entsprechende Heterocyclen mit anderen verknüpfenden Heteroatomkombinationen (O,N-⁵⁾, S,S-⁶⁾, O,S-⁷⁾ und S,N-⁸⁾) hergestellt und charakterisiert, worüber später berichtet wird. Sämtliche neue Heterocyclen werden außerdem zur Komplexierung an verschiedenen Ligand-Übergangsmetall-Fragmenten eingesetzt.

A und Monohydroxy-Verbindungen

Wie bereits berichtet, führt die Einwirkung von 2 mol Methanol auf 1 mol A unter vollständiger Erhaltung der cis-SiC = CB-Gruppierung zu der intramolekular partiell assoziierten Dimethoxy-Verbindung 11³⁰ ($\delta^{11}B = 35.9$, vgl. Tab. 3). Auch mit unverdünntem Ethanol erhielten wir aus A bei Raumtemperatur unter quantitativem Freisetzen von Methylamin nach Gl. (a) mit 85% Ausbeute die Diethoxy-Verbindung 12 mit bei Raumtemperatur bevorzugt offenkettiger Struktur (¹¹B-NMR).

A reagiert mit Phenol deutlich langsamer als mit Ethanol. Nach mehrstündigem Erhitzen des 2:1-Gemischs auf 130-150°C erhält man nach Gl. (a) die unzersetzt destillierbare, nicht assoziierte Diphenoxy-Verbindung 13 mit maximal 80% Ausbeute. Unter BC_{vinyl}-Protolyse bilden sich daneben bis zu 30% eines Gemischs aus Ethyldiphenoxyboran und Dimethyl-2-pentenylsilicium-Verbindungen.

Die Reaktionen der Verbindung A mit der doppelten Menge aliphatischer Monohydroxy-Verbindungen verlaufen bis 100 °C ohne BC_{vinyl}-Spaltung. Dies stimmt mit unseren Ergebnissen über das Verhalten von A gegenüber den Dihydroxy-Verbindungen 1-6 gut überein. Die bekannte, unter (synchroner?) Umlagerung verlaufende Addition der Alkohole an die *cis*-SiC=CB-Gruppierung^{9,10} konnten wir hier nicht beobachten und führen dies auf die Gegenwart der Methylamin-Gruppierung zurück, durch die die vierte Koordinationsstelle am Bor-Atom bis zum vollständigen Verschwinden der Hydroxy-Gruppe blockiert bleibt.

A und Dihydroxy-Verbindungen Ringöffnung von A

Läßt man bei Raumtemperatur unverdünnte äquimolare Mengen von A und 1 aufeinander einwirken, so erhält man nach ca. 1-2 h ohne Freisetzen von Methylamin nach Gl. (b₁) die analysenreine, feste Verbindung 14 mit praktisch quantitativer Ausbeute.

Die Zusammensetzung von 14 mit charakteristischen OH- sowie NH-Absorptionsbanden (3230, 3130 cm⁻¹) entspricht der Summe beider Reaktanden. Die ¹¹B- und ²⁹Si-NMR-Daten von 14 (s. Tab. 3) bestätigen die Struktur eines offenkettigen Aminoborans mit *cis*-OSiC=CBN-Gruppierung.

Die Aufspaltung des Ringes der Verbindung A erfolgt somit nach Gl. (b₁). Eine Addition zu 14' nach Gl. (b₂) findet nicht statt. Die Reaktion wird durch Addition einer Hydroxy-Gruppe von 1 am Silicium-Atom von A eingeleitet, im Gegensatz zu der früher postulierten Startreaktion über das Bor-Atom³⁾. Aus der zunächst gebildeten 1:1-Additionsverbindung erhält man 14 bei rascher Spaltung der SiN-Bindung unter Beteiligung eines vermutlich 5fach koordinierten Silicium-Atoms¹¹⁾. 14 reagiert beim Erwärmen auf > 100°C nach praktisch vollständigem Freisetzen von Methylamin entsprechend Gl. (c) zum Achtring 15a.

Auch eine partielle Spaltung der BC_{vinyt} -Bindung nach Gl. (d) kann man ausschließen. Die Verbindung $1f_1$ und $1f_2$ [s. Gl. (d)], $1f_3$ [s. Gl. (f)] bzw. die isomerisierten Silane

Chem. Ber. 123 (1990) 1013-1028

1 f'_3 [vgl. Gl. (q)], Folgeprodukte der BC_{vinyl} -Protolyse, sind nicht nachzuweisen. Das leicht erkennbare, charakteristische ¹H-NMR-Signal bei $\delta = 5.85$ für das H_{vinyl} -Atom tritt nicht auf.

Organosubstituierte 1,6-Dioxa-2-sila-5-bora-3-cycloalkene aus A und den Dihydroxyalkanen 1-6

Erhitzt man äquimolare Mengen A und Glykol (1) ohne Lösungsmittel auf >90 bis maximal 150°C, so lassen sich ca. 90% eines Mol-Äquivalents Amin austreiben. Die Vakuumdestillation liefert die reine, farblose Verbindung 15a mit 72% Ausbeute. Nach 1-2 Tagen werden aus der leicht beweglichen Flüssigkeit bei Raumtemperatur nadelförmige Kristalle der gleichen Bruttozusammensetzung abgeschieden. Lage und Aufspaltungsmuster der ¹H-NMR-Signale der Glykol-Protonen (vgl. Tab. 2) der flüssigen und der festen Verbindung sind deutlich verschieden. Aufgrund der ¹¹B-NMR-Signallage ($\delta^{11}B = 50$, vgl. Tab. 3) enthält das flüssige 15a ein dreifach koordiniertes Bor-Atom und ist somit das achtgliedrige organosubstituierte 1,6-Dioxa-2sila-5-bora-3-cycloocten. EI-massenspektrometrisch findet man für die flüssige und feste Verbindung m/z 197 als intensivste Bruchstückmasse $(M - 29)^+$. Die CI-massenspektrometrische Messung der festen Verbindung weist dagegen auf die doppelte Molmasse (vgl. Tab. 1) hin. Offensichtlich bildet sich die dimere Verbindung (15a)₂ aus dem monomeren 15a entsprechend Gl. (e) im Zuge einer BO-Metathese¹²⁾.

Festes $(15a)_2$ läßt sich aus gleichen Mengen A und 1 in Pentan bei Raumtemperatur nach Vertreiben von allen leichtflüchtigen Verbindungen im Vakuum auch direkt herstellen. Aus $(15a)_2$ bildet sich nach Lösen in Chloroform bei Raumtemperatur nach wenigen Stunden die Verbindung 15a, leicht erkennbar am Verschwinden bzw. Auftreten spezifischer ¹H- und ¹³C-NMR-Signale (s. Tab. 2, 3).

Das monomere 15a mit relativ starrer Molekülstruktur ohne nennenswerte intramolekulare OB-Koordination (s. ¹¹B-NMR in Tab. 3) ist in Lösung und in der Gasphase die thermodynamisch stabilste Verbindung. Entropisch bevorzugt ist demgegenüber das flexible Dimer, das als Kopf/ Schwanz-verknüpftes 16gliedriges (15a)₂ in festem Zustand (s. Abb. 2) und als frisch gelöste Verbindung ($\delta^{11}B = 42$) allerdings intramolekular OB-assoziiert ist. Das in (15a)₂ tatsächlich vorliegende Tricyclo[11.3.0.0^{5,9}]hexadecadien (vgl. Abb. 3) hat einen besonders hohen Ordnungsgrad.

Den zur Bildung von $(15a)_2$ führenden BO-metathetischen Austausch konnten wir noch durch das Verhalten der Verbindung 20 nahelegen (s.u.). Kreuzungsversuche zwischen den Verbindungen 15a und D-17b oder zwischen 15b und meso/rac-17a (s.u.) blieben erfolglos. Demgegenüber tauschen 15a und Triethylboroxin unter Bildung von 2-Ethyl-1,3,2-dioxaborolan (1 f_1) und 4,5-Diethyl-2,5-dihydro-2,2,3trimethyl-1,2,5-oxasilaborol³⁾ den Glykol-Rest und das Sauerstoff-Atom miteinander aus.

Beim Erwärmen von 15 a mit Glykol (1) auf $\ge 100^{\circ}$ C wird die BC_{vinyl}-Bindung irreversibel gespalten. Die Ethylbor-Gruppierung läßt sich letztlich als 2-Ethyl-1,3,2-dioxaborolan (1 f₁) abfangen, das nach Gl. (f₁) mit 75% Ausbeute analysenrein anfällt und auch als feste 1:1-Additionsverbindung mit Methylamin MA-1 f₁ identifiziert wurde. Au-Berdem bilden sich die borfreien Silane 1 f₂ und 1 f₃ entsprechend den Gl. (f₂) und (f₃).

Die Herstellung der reinen achtgliedrigen 3-Isopropenyl-Verbindung 15b verläuft analog der Präparation von 15a. Beim Erhitzen äquimolarer Mengen von B und 1 auf 130-140 °C erhält man entsprechend Gl. (c) unmittelbar das NMR-spektroskopisch einheitliche, in Benzol monomere 15b mit 65% Ausbeute. Aus der leicht beweglichen Flüssigkeit wird – im Gegensatz zur 3-Methyl-Verbindung – keine feste Verbindung (15b)₂ abgeschieden, die auch spektroskopisch nicht nachgewiesen werden konnte.

Mit den mono- bis tetramethylierten Glykol-Verbindungen 2-4 erhielten wir aus dem Fünfring A die ringerweiterten Verbindungen 16-18 mit Ausbeuten bis über 80%.

A und 1,2-Propandiol (2) reagieren nach den Gl. (g) mit 82% Ausbeute zu einem im Vakuum destillierbaren Gemisch der regioisomeren Achtringe 16 und 16', die sich gaschromatographisch trennen lassen und in Lösung bei Raumtemperatur im Verhältnis ca. 2:1 vorliegen. Beide durch kinetische Kontrolle gebildeten Isomere haben zwar ein gemeinsames ¹¹B-NMR-Signal bei $\delta = 50$, jedoch mehrere signifikant unterschiedlich abgeschirmte ¹H-, ¹³C- und ²⁹Si-NMR-Signale (vgl. Tab. 2, 3). Dem nach Gl. (g₁) mit ca. 67%

Nr.	R ³	R ⁷	R ^{7ⁱ}	R ⁸	R ^{8'}
15a	CH ₃	н	н	н	н
15b	$C(CH_3)=CH_2$	н	н	н	н
16	CH3	н	CH3	н	Η
16'	СН₃	н	н	н	CH_3
meso-17a	CH ₃	н	CH3	н	CH3
rac-17a	CH ₃	н	CH3	CH ₃	н
18	CH ₃	CH ₃	CH_3	CH ₃	CH ₃

auftretenden Isomer 16 ist aufgrund der ¹H-NMR-Signallage der zwei diastereotopen Glykol-Protonen die CH₂OSi-Gruppierung zuzuordnen.

A reagiert auch mit der gleichen Molmenge *meso/rac-2*,3-Butandiol (*meso/rac-3*) unter Bildung organosubstituierter 1,6-Dioxa-2-sila-5-bora-3-cyclooctene. Nach Gl. (h) erhält man ein äquimolares Gemisch der Verbindungen *meso-17* a und *rac-17* a mit 86% Ausbeute. Beide Diastereomere unterscheiden sich nicht nur durch die Lagen der ¹H- und ¹³C-NMR-Signale, sondern signifikant auch durch die Verschiebung der ¹¹B-Resonanzen ($\delta^{11}B = 50$ und 41, vgl. Tab. 3), was auf eine verstärkte intramolekulare OB-Koordination in der Verbindung *rac-17* a mit *threo*-Konfiguration hinweist. Eine unabhängige Zuordnung der NMR-Signale der

Verbindung *rac*-17a ist mit Hilfe der charakteristischen Resonanzen der enantiomeren Verbindungen D-17a bzw. b möglich, die nach Gl. (h_2) aus dem reinen Enantiomer D-3 mit A oder B präparativ zugänglich sind (vgl. Tab. 7). Die *trans*-ständigen Methyl-Gruppen der Verbindungen *rac*-17a und D-17a, b stören sich im Gegensatz zu den Methyl-Gruppen von *meso*-17a nur wenig bei Ausbildung der energiearmen Bicyclo[3.3.0]octan-Struktur.

Das Gemisch meso/rac-17a reagiert oberhalb ca. 130°C mit weiterem meso/rac-3 unter Spaltung der BC_{vinyl}-Bindung. Man erhält nach Gl. (i₁) 2-Ethyl-4,5-dimethyl-1,3,2dioxaborolan (3f₁). Außerdem werden nach Gl. (i₂) als Folgeprodukte die borfreien 2-Penten-2-ylsilane 3f₂ und 3f₃ gebildet, die sich bereits im Gemisch ¹H-NMR-spektroskopisch durch Auftreten des Vinylproton-Signals bei $\delta = 5.58$ beobachten lassen. – Auch aus B und D-3 erhält man beim Erhitzen bis auf 150°C neben 17b (64%) 3f₁ und das borfreie Folgeprodukt 3bf₃.

Mischt man meso/rac-17a mit der äquimolaren Menge 15b, so ist zwischen den ungleichen cis-SiC(R³)=CB- und -ORO-Gruppierungen auch beim Erhitzen auf ca. 120°C kein Austausch entsprechend Gl. (j) nachzuweisen. Die Verbindungen 15a und meso/rac-17b werden aus 15b und meso/rac-17a nicht nachweisbar gebildet. Auch die Verbindungen 15a und D-17b tauschen ihre verschiedenen Bausteine nicht miteinander aus. Die Limitierungen der vermutlich unter BO-Metathese verlaufenden Austauschvorgänge von 15a zu (15a)₂ und umgekehrt müssen noch eingehend überprüft werden.

Nach 12stündigem Erhitzen äquimolarer Mengen A und 2,3-Dimethyl-2,3-butandiol (4) (Pinakol) auf 120-160 °C erhält man nach Abspalten von ca. 70% der nach Gl. (k) zu

erwartenden Methylamin-Menge die NMR-spektroskopisch einheitliche Verbindung 18 mit 53% Ausbeute. Im Vergleich zu den Verbindungen 17a und b hat 18 ein relativ stark abgeschirmtes Bor-Atom ($\delta = 30$), was mit dessen tetraedrischer Koordination in einer Bicyclo[3.3.0]-Struktur vereinbar ist. Erhitzt man A ohne Lösungsmittel mit der äquimolaren Menge 1,4-Butandiol (6) auf 70-100 °C, erhält man nach GI. (m) ein flüssiges Produktgemisch der Verbindung 20 und der Oligomeren (20)_n (¹H-NMR). Auch beim momomeren 20 sind wie bei 15a die Protonensignale der am Sauerstoff gebundenen Methylengruppen aufgespalten (vgl. Abb. 1). BC_{vinyl}-Protolyse beobachtet man beim Erhitzen bis maximal 100 °C nicht, ebensowenig wie bei der analogen Herstellung der Verbindungen 15 – 19. Die Protonen-Signale für die (CH₃)₂Si-Gruppe im Produktgemisch aus A und 6 lassen für 20 in Lösung verschiedene Spezies vermuten (vgl. Abb. 1).

Produkte aus Dihydroxyarenen (7-10) und A

Die Reaktionen der Verbindungen A mit den Dihydroxyarenen 7-10 verlaufen nicht einheitlich und sind keineswegs so übersichtlich wie die Umsetzungen von A mit den Dihydroxyalkanen 1-6. Bereits bei Raumtemperatur führt die Protolyse der BC_{vinyl}-Bindung zur Bildung von Folgeprodukten f_1-f_3 der Dihydroxyarene.

Tropft man zu Brenzcatechin (7) in Toluol-Lösung bei Raumtemperatur die äquimolare Menge A, so wird in 1.5 Stunden kein Methylamin frei. Aus der klaren Lösung fällt festes MA-1 f_1 aus. Aus dem Filtrat isoliert man ein Gemisch der gaschromatographisch trennbaren Verbindungen 21, 7 f'_1 und 7 $f_3/7 f'_3$ [vgl. Gl. (n)], die NMR-spektroskopisch und massenspektrometrisch identifiziert wurden. Der Rückstand besteht aus Boraten ($\delta^{11}B = 4.5$) unbekannter Struktur.

Das aus unverdünnten, äquimolaren Mengen A und 1,3-Propandiol (5) nach Gl. (1) erhaltene Produkt ist eine im Hochvakuum destillierbare, farblose, klare und zähflüssige Verbindung 19 mit der Summenformel $C_{12}H_{25}BO_2Si$, bestehend aus je einer substituierten *cis*-SiC = CB- und 1,3-Propandioxy-Gruppierung. Die Lage des ¹¹B-NMR-Signals ($\delta = 27.5$) von 19 weist auf eine Bicyclo[4.3.0]nonan-Struktur mit intramolekularer OB-Koordination hin. A reagiert mit 7 somit bereits bei Raumtemperatur nach BC_{vinyl} -Protolyse unter Bildung des Borans $7f_1$ und des Gemischs der borfreien, isomeren Silane $7f_3$ und $7f'_3$. $7f_1$ kann leicht als reines Py- $7f_1$ isoliert werden, während $7f_3$ und $7f'_3$ lediglich im Gemisch an Hand der unterschiedlichen Signalmultiplizitäten des Vinylprotons ¹H-NMR-spektroskopisch zu identifizieren sind. Es handelt sich offensichtlich um drei Regioisomere mit 2- und/oder 3-Pentenyl-Gruppe

am Silicium-Atom, auf deren Bildung weiter unten eingegangen wird.

Resorcin (8) reagiert in 24 Stunden mit der äquimolaren Menge A in Mesitylen bei ca. 150°C nach Abspalten von ca. 90% Methylamin zu einem gelblichen, hochviskosen Produktgemisch mit dem massenspektrometrisch identifizierten, vermutlich cyclischen Dimer (22)₂ [vgl. Gl. (o)] und mindestens einer weiteren höhermolekularen Verbindung, die ebenfalls die (E)-Si(CH₃)₂C(CH₃) = C(C₂H₅)B(C₂H₅)- und 1,3-Dioxybenzol-Gruppierungen enthält.

Aus äquimolaren Mengen A und 2,3-Dihydroxynaphthalin (9) bildet sich nach drei Stunden in Mesitylen bei Raumtemperatur kristallines MA-9f₁. Die klare Lösung enthält danach ein Gemisch aus den NMR-spektroskopisch identifizierten Verbindungen 23 (ca. 60%) und MA-9f₁ (ca. 20%) sowie einem unbekannten Borat ($\delta^{11}B = 5.1$) [vgl. Gl. (p)].

borfreien Silane mit den regioisomeren 2(3)-Penten-2(3)yloxy-Gruppen lassen sich nur im Gemisch spektroskopisch identifizieren, nicht aber in reiner Form isolieren.

Die dyotrope Umlagerung des 2-Pentenylsilyloxy- in den 3-Pentenylsilyloxy-Rest könnte nach Gl. (q) über eine Siliren-Stufe verlaufen, wobei zwischenzeitlich ein höher koordiniertes Silicium-Atom (KZ > 4) auftreten sollte. Bisher wurde auf eine derartige Isomerisierung der *cis*-SiC=CB-Gruppierung nur in einer Dissertation¹³⁾ hingewiesen.

A reagiert mit 1,8-Dihydroxynaphthalin (10) beim Erhitzen in Mesitylen bis auf 115 °C nach den Gl. (r). Dabei wird die NMR-spektroskopisch charakterisierte Verbindung 24 (74% Ausbeute) (vgl. Tab. 2, 3) gebildet. Unter BC_{vinyl}-Bindungsspaltung erhält man Verbindung 10f₁ sowie die borfreien Silane 10f₂ und 10f₃.

Erhitzt man A mit der äquimolaren Menge 9 in Mesitylen bis maximal 150°C, erhält man nach Abspalten von Methylamin ein wachsartiges Gemisch, aus dem sich festes $9f_1$ sowie flüssiges 23 im Verhältnis ca. 7:3 abtrennen lassen [vgl. Gl. (p)]. Der in Pentan gut lösliche Anteil besteht außerdem aus borfreien Isomeren ($9f_3/9f'$) mit den massenspektrometrisch bestimmten Molmassen (M⁺) 412. Die drei

Die Ringverbindungen aus cis-SiC = CB- und Dioxyaren-Gruppierung werden wir wegen der hier geschilderten Ausbeute-vermindernden Nebenreaktionen auch aus den Di-

chlor-Verbindungen (E)-ClSi(CH₃)₂C(R₃³) = C(C₂H₅)B(C₂H₅)-Cl³⁾ mit Dialkalimetall-Verbindungen der Dihydroxyarene 7-10 herstellen, worüber gesondert berichtet wird.

Charakterisierung der Produkte mit cis-SiC = CX-Gruppierung (X = H, C₂H₅B \leq)

IR-Spektren: Die C=C-Valenzschwingung der *cis*-SiC=CB-Gruppierung absorbiert bei 1545 und 1585 (14) bzw. bei 1560-1570 cm⁻¹ (15b). Die C=C-Absorptionsbande der Isopropenyl-Gruppe von 15b findet man bei 1620 cm⁻¹. – Die NH-Gruppe liegt im IR-Spektrum von 14 bei 3230, die OH-Gruppe bei 3130 cm⁻¹. Die NH₂-Gruppe von MA-21 absorbiert bei 3320 und 3230 cm⁻¹.

Massenspektrometrische Untersuchung: Die Elektronenstoß-Massenspektren (EI) sämtlicher Produkte mit (E)-

Tab. 1. Auszüge aus den Massenspektren der Produkte mit cis-(CH₃)₂SiC(R)=C(C₂H₃)X-Gruppierung [X = H, B(C₂H₅)O-]

Ver- bin-	Mol masse	M⁺	Gef. m/z Basis-	(% rel. Intensität) ^{a)} Weitere charakteristische
dung			peak	Bruchstückmassen
12	256.3	-	171	241(1), 227(71), 222(7), 199(11), 153(27), 111(22), 97(22), 75(22)
13	352.4	-	259	337(2), 323(77), 211(10), 151(25), 77(37)
15a	226.2	-	197	211(1), 155(23), 153(28), 127(25), 111(44), 97(41)
(15a) ₂	452.4	452 (CI-MS)	197	423(<1) , 253(5), 155(9), 153(5), 111(12), 97(14)
lf2	188.3	-	75	173(9), 157(12), 129(7), 119(40), 103(36)
lf3	314.6	-	73	299(7), 245(71), 133(73), 127(94), 86(52), 84(84)
15b	252.2	-	223	237(1), 191(10), 181(20), 147(14), 137(39)
16/16'	240.2	-	111	225(1), 211(62), 169(59), 153(26), 127(76), 97(97)
meso/rac–17a	254.3	-	225	239(1), 169(73), 153(27), 151(24), 127(99), 111(62), 97(62)
D-17a	254.3	-	127	239(2), 225(89), 169(67), 153(34), 111(57), 97(72), 83(23), 75(37), 59(29)
D-17b	280.3	-	153	251(43), 195(39), 137(26), 75(21)
18	282.3	-	253	267(2), 182(45), 171(70), 169(28), 155(28), 153(62), 140(21), 126(27), 111(30), 97(42), 84(46), 83(63)
19	240.2	-	211	225(2), 183(15), 141(20), 127(10), 111(18), 97(23)
20	254.2	_	225	239(3), 209(6), 183(28), 141(27), 111(18), 97(21), 55(4)
21	274.2	-	245	259(1), 97(15), 73(72)
i0f2	286.4	286(13)	216	201(73), 186(39), 73(24), 59(27)
23	324.3	-	295	73(48)
24	324.3		295	309(<1), 73(65)

^{a)} EI-Massenspektren (70 eV). Angegeben sind die Massen mit dem häufigsten natürlichen Isotop ¹²C, ¹H, ¹¹B, ¹⁶O und ²⁸Si. $(CH_3)_2SiC(R) = C(C_2H_5)B(C_2H_5)$ -Gruppierung [R = CH₃; C(CH₃) = CH₂] (vgl. Tab. 1) enthalten keinen Molekülpeak (M⁺).

Durch chemische Ionisation (CI) mit Isobutan läßt sich bei Verbindung $(15a)_2$ die Molekülmasse des Dimer (M⁺ 452) nachweisen. Die Zerfallsmasse (M – 29)⁺ tritt bei den Verbindungen 15, 17–19 und 21 als Basismasse auf. Der weitere Zerfall der Verbindungen 15–18 liefert die Bruchstückmassen m/z 153 von unterschiedlicher Intensität. Die Zerfallsmasse m/z 127 ist den Verbindungen 15a, 16/16', 17 und 19 gemeinsam, wobei Verbindung 19 analog 15a vermutlich wie in Schema 1 zerfällt.

Schema 1. Vermuteter Zerfall der Verbindungen 15a und 19 im Massenspektrometer; in den Kästchen M⁺ und nachgewiesene Bruchstückmassen

Die Zerfallsmassen m/z 111 und 97 treten im EI-Massenspektrum der Verbindungen 15–19 auf. Beide Bruchstückmassen sind im Spektrum von 16/16' besonders intensiv.

NMR-Spektren: Zusätzlich zur Charakterisierung der Verbindungen 11–13, 15–21 und 24 in Lösung ergeben sich zahlreiche Hinweise auf strukturelle Besonderheiten aus den ¹H-, ¹¹B-, ¹³C- und ²⁹Si-NMR-Daten (Tab. 2–4).

¹*H*-*NMR*: Die ¹*H*-Resonanzen der Verbindungen **15**–**21** und **24** liegen im Erwartungsbereich (s. Tab. 2), d.h. neben den komplexen Multipletts der ¹*H*(EtB) = H^5 -Resonanzen lassen sich Anzahl, Aufspaltung und relative Intensitäten der übrigen ¹*H*-NMR-Signale eindeutig für die jeweilige Struktur zuordnen.

Bemerkenswert sind die Unterschiede zwischen 15a und $(15a)_2$, die anzeigen, daß beide Formen in Lösung existieren, im festen Zustand jedoch das Dimere $(15a)_2$ vorliegt. Auffallend ist besonders der deutliche Unterschied im Erscheinungsbild der ¹H-NMR-Signalaufspaltung für die H⁷- und H⁸-Atome von 15a bzw. (15a)₂ bei Raumtemperatur. Während für das achtgliedrige 15a, das nach dem ¹¹B-NMR-Spektrum ($\delta^{11}B = 50.4$) kein Bicyclo[3.3.0]octen-System ist, zwei Multipletts (für ein AA'BB'-Spinsystem infolge rascher Ringinversion) bei $\delta = 4.08$ und 3.67 auftreten, beobachtet man für die in CHCl₃ frisch gelöste Ringverbindung (15a)₂

	δ ¹ H	(ppm),	200 MHz,	CDCl ₃ ;	[ⁿ J _{HH} (Hz)]			δ ¹ H	(ppm),	200 MHz,	CDCl ₃ ;	[ⁿ J _{HH} (Hz)]	l
Nr.	H ²	H ³	H, ⁴	Hx	H(COB) ^{c)} H ^y	H(COSi) ^{c)}	Nr.	H ²	H3	H ⁴	H ^x	H(COB) ^c H) H(COSi) ^{c)}
11 ^{a)}	0.08	1. 60	2.05 0.89	0.61	3.31;	3.27	<i>rac</i> –17a (D–17a)	0.16; 0.06	1.57	2.23; 2.02 0.84	≈0.7	4.04 1.11	3.47 _(dq) 1.09
12	0.12	1.63	2.09 0.93	0.75	3.67; 1.17;	3.66 1.16	meso– 17a	0.2 3; 0.15	1.65	2.36; 2.31 0.92	=0.8	[8.7;6.6] 4.43 1.20	[8.7;6.2] 3.70 1.18
13 ^{b)}	0.51	1.88	2.32 1.18	1.17	7.38;	7.16	D-176	0.23; 0.19	4.80	2.26; 2.10	0.82	[3.5;n.g.] 4.15(da)	[3.5;n.g.] 3.55
14	0.07	1.60	2.12 0.81	0.83	3.99; 2.35(3.64 NCH ₃)			4.42 1.74	0.91		1.20 [8.6;6.3]	1.19 [n.g.;6.3]
15a	0.13	1.66	2.20	0.89	1.07(br 4.09(m);	;OH,NH) 3.67(m)	18	0.25	1.60	2.17 0.95	0.75	- 1.29	- 1.17
15a ^{b)}	0.02;0.14	1.60	0.85	0.82	- 4.22;3.86	 3.65;3.60	19	0.22	1.62	2.11 0.91	0.65	4.06; 3.96 1.68	
(-60°C)	0.18	1.63	0.80	0.71	3.7	36)	20	0.21	1.62	2.08 0.91	0.48 0.67	3.91 1.	; 3.62 55
1f.	0.10	1.60	0.91	5 78(ta)	-		(20) _{n>1}	0.09	1.62	2.07 0.92	0.75	3. 1.	58 55
2 1f	0.12	1.64	0.91	[6.6;1.7]	_	≈3.8(OH)	21	0.43	1.66	2.27 0.9	1. 2 3 1.1	6	.98
15h	0.12	1.04	0.95	[6.6;1.7]	4 13	3.71	MA-21 ^b	0.29	1.82	2.11 0.98	≈0.45	6 2.45(NCH	.83 l ₃);3.43(NH ₂)
150	0.14	4.41	0.85	0.75	4.15	5.71	7f ₃	0.35	1.81	2.19 1.06	6.03(tq) [6,6;1.8]	6	.85
16	0.13; 0.04	1.62	2.35; 1.96 0.85	0.88	4.38 1.13	3.59; 3.21 -	7f ₃ '	0.35	2.26 0.88	1.79	6.16(qt) [6.6;0.9]	6	.85
16'	0.11; 0.07	1.63	2.35; 1.96 0.85	0.88	4.18; 3.76 -	3.89 1.18	24 ^{b)}	0.55	1.89	2.47 1.24	0.52 0.74	7.4	l; 6.9
							10f2 ^{b)}	n.b.	1.82	2.25 1.08	6.18(tq) [6.7;1.7	7.4 9.7	l; 6.9 79(OH)

Tab. 2. ¹H-NMR-Daten der Verbindungen mit cis-(CH₃)₂SiC(CH₃) = $C(C_2H_3)X$ -Gruppierung mit X = H, B(C₂H₃)O –

^{a)} Vgl. Lit.²⁾, dort S. 604. $-^{b_1}$ In CD₂Cl₂ gemessen. $-^{c_1}$ Zum Vergleich ¹H-NMR (200 MHz, CDCl₃): [(C₂H₃)₂BOCH₂]₂: $\delta = 4.00$ (4H), 0.85 (10H); [(CH₃)₃SiOCH₂]₂: $\delta = 3.51$ (4H), -0.02 (18H).

(vgl. Abb. 2) in diesem Bereich nur eine einzige, schmale ¹H-Resonanz bei $\delta = 3.73$. Dies kann auf den im 16-Ring vorhandenen Torsionswinkel (vgl. Tab. 5) der CH₂CH₂-Gruppierungen zurückzuführen sein. Ähnliche Beobachtungen gelten für die ¹H-NMR-Spektren im Bereich der CH₂O-Resonanzen von **20** (vgl. Abb. 1), das destilliert überwiegend als Monomer vorliegt, jedoch allmählich zu (**20**)_n oligomerisiert.

Bei -60 °C erscheinen im ¹H-NMR-Spektrum für die H⁷und H⁸-Atome von 15a in CD₂Cl₂ insgesamt vier Multipletts (δ^{1} H = 4.22, 3.86, 3.65, 3.60), die Methylen-H⁴-Atome geben das typische Muster für den AB-Teil eines ABM₃-Spinsystems. Da auch zwei ¹H-Resonanzen für die Dimethylsilandiyl-Gruppe auftreten (ebenso wie im ¹³C-NMR-Spektrum, für die Barriere der Ringinversion bei -30 °C gilt: $\Delta G^* =$ 51.6 ± 2 kJ/mol), ist bei tiefer Temperatur die Ringinversion langsam bezüglich der NMR-Zeitskala. Aus den ¹¹B- und ²⁹Si-NMR-Daten (vgl. unten) läßt sich allerdings kein Hinweis auf koordinative OB-Wechselwirkungen ablesen.

Die ¹H(COB)- und ¹H(COSi)-Resonanzen wurden mit Hilfe der Verbindungen (Et₂BOCH₂ $+_2$ und (Me₃SiOCH₂ $+_2$ (vgl. exp. Teil) zugeordnet. Die ¹H-NMR-Signale von **16** und 16' sind zudem durch das 2:1-Mengenverhältnis (unabhängig von der Temperatur zwischen -60 und +50°C) der beiden Verbindungen eindeutig zu unterscheiden. – Zur Kennzeichnung der Verbindungen *rac*-17a und *meso*-17a dienten die Kopplungskonstanten der *trans*- und *cis*-Protonen im Glykolteil (${}^{3}J_{\text{HH,trans}} > {}^{3}J_{\text{HH,cis}}$). Außerdem wurde die Identität der ${}^{1}\text{H-NMR-Signale}$ von D-17a und *rac*-17a herangezogen. – Im ${}^{1}\text{H-NMR-Spektrum}$ des einheitlichen D-17b beobachtet man bei -60°C mit 15-20% ein zweites Konformer (?). – Für die verschiedenen cyclischen Verbindungen sind mehrere dynamische Prozesse denkbar (z. B. Ringinversion, Bruch koordinativer OB-Bindungen, intermolekularer Austausch), die hier jedoch nicht in allen Fällen im Detail verfolgt wurden.

¹³C- und Heteroatom-NMR-Daten: Die ¹¹B-, ¹³C- und ²⁹Si-NMR-Daten der verschiedenen Organobor-Verbindungen sind in den Tab. 3 und 4 zusammengestellt.

¹¹B-NMR: Die δ^{11} B-Werte für die Verbindungen 11–21 und 24 nehmen einen relativ großen Bereich von +12.5 (MA-21) bis 52.2 (21) ein. Während in MA-21 ohne Zweifel ein Boran-Addukt vorliegt, müssen für die übrigen Verbin-

dungen mehr oder weniger starke intramolekulare koordinative Wechselwirkungen diskutiert werden. Typisch sind hierbei zunächst sterische und elektronische Einflüsse, die sich bereits bei den Verbindungen 11, 12 und 13 anhand der δ^{11} B-Werte (35.9, 44.4 bzw. 50.1) auffinden lassen: Die EtO-Gruppe in 12 besitzt einen geringfügig höheren sterischen Anspruch als die MeO-Gruppe in 11 und das Sauerstoff-Atom der PhO-Gruppe in 13 ist sowohl aus sterischen als aus elektronischen Gründen ein schlechterer σ -Donor gegenüber dem Bor-Atom. Auch für 11 folgt jedoch aus dem δ^{11} B-Wert (im Bereich¹⁴⁻¹⁶) für KZ_B = 3), daß das Gleichgewicht zwischen den Spezies mit KZ_B = 4 und 3 keineswegs vollständig zu KZ_B = 4 verschoben ist.

1021

Die Änderung der δ^{11} B-Werte für 11 und 12 in Abhängigkeit von der Temperatur bestätigt dieses Gleichgewicht. Für 11 wird die ¹¹B-Resonanz bei -60° C mit $\delta = 25.6$ gefunden, entsprechend einer besseren magnetischen Abschirmung des Bor-Atoms um ca. 10 ppm im Vergleich zu Raumtemperatur. Für 12 bei -40° C nimmt die ¹¹B-Abschirmung um ca. 7.5 ppm zu gegenüber Raumtemperatur.

Ist eine Amino-Gruppe am Bor-Atom gebunden (14), zeigt die ¹¹B-Resonanz an, daß keine OB-Wechselwirkung besteht. In den übrigen Verbindungen sind die δ^{11} B-Werte geeignet, um schwache oder starke intramolekulare koordi-

	$\delta^{11}B^{b-d}$		$\delta^{13}C$	ppm [J _{SiC}	(Hz)]			$\delta^{29} Si^{h)}$	
Nr.	ppm	C ²	C ³	C ^{4⁸⁾}	C ⁵	C(OB) ⁱ⁾	C(OSi) ⁱ⁾	_ ppm	
11 ^{e)}	35.9 ^{c)} 25.6 (60°C)	-3.0[56.0]	131.8[82.4] 12.9	161.8 23.1 12.6	≂13 8.6	52.6	48.4	16.3 23.7 (-60°C)	
12	44.4 ^{d)}	-2.1[57.1]	132.6 13.3	159 23.3 12.6	13.5 8.5	60.9 18.1	58.1 17.5	7.1	
13	50.1 ^{d,f)}	1.0[56.8] ^{f)}	134.5[83.6] 14.5	157.8 24.3 13.3	15.3 8.9	156.9 i 121.1 o 130.3 m 123.4 p	155.1 i 120.7 o 129.5 m 122.6 p	7.5	
14	48.6 ^{d)}	0.22[br] (-50*C)	131.0 13.3	136 25.1 16.7	10.6 8.4	26.9	64.4 63.8	4.6 (−30°C)	
15a	50.4 ^{d)} 51.0 (-60°C)	-2.5[60.0] ^{f)} -2.0[br];-3.7[br] (-50°C) ^{f)}	139.4[76.3] 14.8	155.3 23.8 12.9	13.5 8.0	66.4 -	62.8 -	6.4 8.0 (-60°C)	
(15a) ₂	42.0 ^{d)} 35.0 ^{d)} (-30°C)	-2.3[56.0] (-50°C)	132.2[83.4] 13.1	159.5 23.0 12.8	14.8 8.5	64.8 -	63.9 -	13.8 (-30°C)	
1f ₂	-	-3.2[60.4]	132.8[76.8] 13.5	143.9 21.3 13.3	-	-	63.7;63.2	n.g.	
lf ₃	_	-2.9[60.1]	133.4[76.9] 13.6	143.6 21.5 13.8	-	-	63.5	n.g.	

Tab. 3. ¹³C- und Heteroatom-NMR-Daten der Produkte mit cis-(CH₃)₂SiC(CH₃) = C(C₂H₅)X-Gruppierung^a [X = H, B(C₂H₅)O -]

Tab.	3	(Fortsetzung)
------	---	---------------

	δ ¹¹ B ^{b-d)}	$\delta^{13}C$ ppm [J _{SiC} (Hz)]								
Nr.	ppm	C ²	C ³	C ^{4^{g)}}	C ⁵	C(OB) ⁱ⁾ C(OSi) ⁱ⁾	— ppm			
15b	51.2 ^{d)} 52.0 (-60°C)	-2.06	149.8 146.3 110.8 24.8	155 25.8 13.7	13.5 7.9	66.2 62.5	4.7 5.9 (-60°C)			
16	50.0 ^{c)}	-1.5[61.9] -3.9[56.0] (-50°C)	138.6 14.6	155.2 23.8 13.1	13.5 8.5	71.5 67.7 17.7 –	7.3 ^{j)}			
16'	50.0 ^{c)}	-1.2[br] -3.4[br] ^f)	139.1 14.8	154.4 24.0 13.2	13.6 8.4	67.5[br] 69.5[br] - 20.4	4.8 ^{j)}			
meso- 17a	50.0	-1.2[62.2] -3.8[56.1] ^{f)}	138.3[76.5] 14.2	155.6 23.5 12.8	≂13 8.0	73.6; 71.7 17.9; 15.7	5.1			
<i>rac</i> -17a	41.0 ^{d)}	0.5;[57.3] -1.0[59.6] (+30°C)	135.1 13.8	≈160.6 23.2 12.8	12.6 8.5	76.8; 76.5 19.1; 18.6	≈12 (sbr)			
D-1/a)		-0.3[br] -2.5[br] (-50°C)	11.9[br]	22.4[br] 12.5	10.5[br] 9.4[br]	79.5[br];75.4[br] 18.2	30.6 (-30°C)			
D- 17b	39.8 ^{d)}	0.64[59.2] -0.15[60.8]	145.3[br] 145.8 110.3 25.1	160.7 24.6 13.6	12.7 8.4	76.9; 76.6 19.2; 18.8	n.b. (+20°C) 30.1 (-60°C)			
18	30.0 ^{c)}	1.7[56.1] ^{f)}	126.9[83.5] 12.3	171.3 22.8 13.5	15.9 9.0	89.1; 79.5 25.3; 25.1	15.4			
19	27.5 ^{c)}	-1.9[55.0] (-50°C)	128.4[84.7] 12.0	168.3 24.2 13.1	6.0 9.0	63.7; 59.4 29.0	23.4			
20	29.7	-1.3[55.1]	129.6 12.6	n.b. ^{g)} 22.9 12.8	12.9 9.0	64.0; 63.9 31.3; 29.2	16.4			
21	52.2 ^{d)}	-0.8[60.1] ^{f)}	133.6 15.3	n.b. ^{g)} 24.1 13.2	14.7 8.1	149.2, 145.4 123.7; 123.3; 121.3; 120.0	14.8			
MA-21	12.5 ^{d,f)}	2.3 ^{f)}	137.0 18.0	n.b. 24.8 13.7	12.4 8.5	149.4; 148.2 122.0; 120.5 120.4; 118.4	n.g.			
7f ₃	-	-1.8	133.9 14.1	147.2 22.1 13.8	_	144.5 i 121.9 o 121.2 m	n.g.			
24	20.3 ^{d,f)}	-0.3[br] ^f)	136.6 12.2	168 23.3 13.5	10.3 9.0	153.4 146.0 136.6;129.0 125.4;124.9 118.3;113.6 111.0;109.9	n.g.			
10f ₂	-	-2.0[62]		22.3	_		n.g.			

^{a)} Gemessen in CDCl₃, falls nicht anders vermerkt. – ^{b)} Bei 64.2 MHz gemessen: Halbhöhenbreite $h_{1/2} < 150$ Hz. – ^{c)} $h_{1/2} = 150 - 300$ Hz. – ^{e)} Vgl. Lit.²⁾, dort S. 606. – ^{f)} In CD₂Cl₂ gemessen. – ^{g)} n.b. = nicht beobachtet, breites ¹³C⁴-NMR-Signal. – ^{h)} Bei 39.7 MHz; n.g. = nicht gemessen. – ⁱ⁾ Zum Vergleich ¹³C-NMR (54.3 MHz, CDCl₃): $[(C_2H_3)_2BOCH_2 + 2: \delta = 65.4$ (CH₂O), 11.6 (CH₂B), 7.5 (CH₃); $[(CH_3)_3SiOCH_2 + 2: \delta = 63.8$ (CH₂O), -0.7 [$J_{SiC} = 58.8$ Hz] (CH₃). – ^{i) 25}Si-NMR-Signale von 16/16' sind zwischen – 30 und – 60°C breit, bei ca. – 80°C wieder scharf (ohne signifikante Änderung der Signallagen).

native OB-Bindungen nachzuweisen [vgl. auch die δ^{29} Si-Werte]. So findet man für **15a**, **16/16'** und *meso-***17a** δ^{11} B-Werte bei $\geq +50$, typisch^{14,16)} für die Struktureinheit OB(C)C mit keinen oder sehr geringen zusätzlichen Donor-Akzeptor-Wechselwirkungen. Es ist bemerkenswert, daß für **15a**, **b** auch bei $-60 \,^{\circ}$ C keine Änderung der δ^{11} B-Werte beobachtet wird. Dagegen sind bei (**15a**)₂, *rac-***17**, **18**, **19**, **20** und **24** die δ^{11} B-Werte < +45 und liegen damit deutlich nicht mehr im Erwartungsbereich¹⁴⁻¹⁶⁾ für trigonale Bor-Atome mit der Umgebung OB(C)C. Die ¹H- und ¹³C-NMR- Spektren (s. u.) zeigen an, daß der Bruch koordinativer OB-Bindungen bezüglich der NMR-Zeitskala rasch erfolgt, da bei Raumtemperatur keine unterschiedlichen ¹H- und ¹³C-Resonanzen für die Me₂Si-Gruppen gefunden werden. Dies würde jedoch gefordert bei fester koordinativer OB-Bindung aufgrund der Chiralität des Bor-Atoms mit KZ_B = 4. Die z. T. geringe [<10 ppm, z. B. (15a)₂, rac-17a] Zunahme der Abschirmung der ¹¹B-Kerne deutet darauf hin, daß schwache koordinative OB-Bindungen vorliegen. Das Signal des ¹¹B-Atoms von (15a)₂, das man z. B. gegenüber dem von 15a deutlich abgeschirmt ($\Delta \delta^{11}B = +7.4$) findet, verschiebt sich – im Gegensatz zu **15a** – bei tiefer Temperatur (-30°C) zu niedrigen Frequenzen auf $\delta^{11}B = 35.0$ (vgl. Tab. 3).

¹³C-NMR: Sowohl die Anzahl als auch die Linienbreite [partiell relaxierte skalare Kopplungen ${}^{1}J({}^{13}C{}^{11}B)$ für die Bor-gebundenen Kohlenstoff-Atome¹⁵⁻¹⁷] sind indikativ für die Strukturen der Verbindungen 11-24 (Tab. 3, 4). Aufgrund des bereits vorliegenden umfangreichen Datenmaterials^{3,18)} für Struktureinheiten des Typs cis- $SiC^{3}(R^{3}) = C^{4}(Et)B$ läßt sich erkennen, daß die Lage der ¹³C(C³)-Resonanz auf koordinative OB-Wechselwirkungen ansprechen sollte. Einen Beitrag zur Entschirmung des ¹³C³-Kerns liefert bekanntlich¹⁵⁻¹⁷⁾ die Erweiterung des π -Systems unter Einbeziehung des trigonal-planar umgebenen Bor-Atoms. Entfällt dieser Beitrag vollständig oder teilweise. müßte bei sonst weitgehend unveränderten Bindungsverhältnissen die ¹³C³-Resonanz merklich zu niedrigeren Frequenzen verschoben werden. Dies wird bestätigt, wenn man die Information aus den ¹¹B-NMR-Spektren verwertet. So findet man z. B. $\delta^{13}C^3$ für 15a und 16/16' bei 139.4 bzw. bei 138.6 und 139.1 (aus $\delta^{11}B = 50.4$ bzw. 50.0 folgt, daß sehr schwache oder keine koordinative OB-Bindungen bestehen). Dagegen wird für 18 ($\delta^{11}B = 15.4$) $\delta^{13}C^3 = 126.9$ gefunden. Es ist nicht zu erwarten, daß die zusätzlichen Methyl-Gruppen an der Glykol-Brücke in 18 für diese Änderung der ¹³C³-Abschirmung verantwortlich sind.

²⁹Si-NMR: Die δ^{29} Si-Werte (Tab. 3) sind ein empfindliches Kriterium für die koordinative OB-Bindung, wenn diese von einem Sauerstoff-Atom in Nachbarschaft zum Silicium-Atom ausgeht. In anderem Zusammenhang haben wir gezeigt³⁾, daß in einer R₃SiO-Gruppe das Sauerstoff-Atom mit Oxonium-Struktur merklich zur Entschirmung des ²⁹Si-Kerns beiträgt. Setzt man diese Erfahrung hier ein, so lassen sich die δ^{29} Si-Werte der Verbindungen 11–24 gut einordnen. Ersetzt man eine Methvl-Gruppe in Verbindungen des Typs Me₃SiOR durch einen Alkenyl-Rest, so verschiebt sich die ²⁹Si-Resonanz um ca. 9-11 ppm zu niedrigeren Frequenzen. Wenn jedoch das Sauerstoff-Atom eine koordinative OB-Bindung betätigt, wird dieser Trend teilweise oder völlig kompensiert. Deutlich wird dies z.B. im Fall von 11, wo das Gleichgewicht zwischen Bor-Atomen mit KZ_B = 3 und 4 mit sinkender Temperatur zu $KZ_B = 4$ verschoben wird, der Beitrag der Oxoniumstruktur also zunimmt. Damit im Einklang steht der Verlust an ²⁹Si-Abschirmung um weitere 7.4 ppm auf $\delta^{29}Si = 23.7$ bei -60 °C. Auch für 12 verschiebt sich die ²⁹Si-Resonanz bei tiefer Temperatur zu höheren Frequenzen infolge zunehmender koordinativer OB-Wechselwirkungen [δ^{29} Si (25°C) 7.1, (-40°C) 13.4].

So findet man z. B. für **13**, **14**, **15**a, b und **16**/**16'** (wo aufgrund der δ^{11} B- und δ^{13} C³-Werte koordinative OB-Bindungen vernachlässigbar sind) Δ^{29} Si-Werte von ca. –10 ppm (relativ zu δ^{29} Si von Me₃SiOPh bzw. Me₃SiOCH₂CH₂-OMe¹⁹). Dagegen betragen die Δ^{29} Si-Werte (relativ zu Vergleichsverbindungen mit der Me₃SiO-Einheit) bei Raumtemperatur für **11** und (**15**a)₂ lediglich –0.9 bzw. –3.4 ppm, dort sind auch aufgrund der δ^{11} B- und δ^{13} C³-Werte koordinative OB-Bindungen angezeigt. Das ²⁹Si-NMR-Signal des festen $(15a)_2$ ist z.B. gegenüber dem von 15a entschirmt $(\Delta\delta^{29}Si = -7.6)$, bedingt durch den Abzug der Elektronen von den Si-gebundenen Sauerstoff-Atomen zu den Bor-Atomen (vgl. Abb. 3). – Die ²⁹Si-NMR-Signale bestimmter Verbindungen wie z.B. von D-17b lassen sich erst nach Verlangsamen dynamischer Prozesse am Silicium-Atom bei -60 °C registrieren.

Kristallstrukturanalyse von (15a)₂

Im festen Zustand liegt 15a als Dimer (15a)₂ aus zwei gleichläufig verknüpften Molekülen 15a in Form eines sechszehngliedrigen Rings (Abb. 2) vor, dessen Struktur mit C_i -Symmetrie durch transannulare O···B-Wechselwirkungen bestimmt ist (Abb. 3)^{20a)}.

Abb. 2. Molekülstruktur von 4,5,12,13-Tetraethyl-2,2,3,10,10,11-hexamethyl-1,6,9,14-tetraoxa-2,10-disila-5,13-dibora-3,11-cyclohexadecadien (15a)₂ im Kristall mit Angaben der Atombezeichnungen (außer H1 und H2 sämtliche H-Atome ohne Numerierung)

Abb. 3. Seitliche Ansicht der Molekülstruktur von (15a)₂ mit Kennzeichnung der transannularen OB-Wechselwirkung

Die Atome der beiden cis-SiC=CB-Gruppierungen von $(15a)_2$ sind weitestmöglich voneinander entfernt. Das Inversionszentrum liegt im Mittelpunkt der Fläche der vier Glykol-C-Atome C1, C2, C1' und C2'. Die Atomabstände und Atomwinkel von $(15a)_2$, zusammengestellt in Tab. 4, entsprechen den Werten bekannter Verbindungen mit weitgehend nicht verzerrten Bindungen.

Obwohl die Bor-Atome in $(15a)_2$ bei einer Winkelsumme von 357.6° nahezu planar umgeben sind, ist die strukturbestimmende O…B-Wechselwirkung bei einem O1′…B-

Tab. 4. Ausgewählte Atomabstände (pm) und Winkel (°) in $(15a)_2$. Die Numerierung der Atome entspricht den Angaben in Abb. 1

Atomabständ	le (pm)	Winkel (*)								
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	164.1(4) 142.1(6) 149.0(7) 143.5(6) 135.9(6) 159.6(8) 134.5(8) 184.8(6)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	101.4(2) 119.2(4) 125.5(5) 120.2(5) 121.3(5) 109.8(5) 111.4(4) 124.4(4)							
H1 C1 H1' C1	Weitere Winkel (*) H1 - C1 - C2 $109.6(4)$ C1 - C2 - H2 $118.0(3)$ H1' - C1 - C2 $119.4(3)$ C1 - C2 - H2' $116.4(3)$									
HI	$\frac{1}{10000000000000000000000000000000000$									

bzw. O1...B'-Abstand von 238.3 pm anzunehmen, da in Triethylboroxin intermolekulare O...B-Wechselwirkungen bereits bei einem Abstand von 341 pm eine Phasenumwandlung auslösen^{20b)}. Ein transannularer Elektronentransfer von den Glykol-Sauerstoff-Atomen in die leeren p-Orbitale der Bor-Atome sollte den p-Charakter an den Sauerstoff-Atomen O1 bzw. O1' erhöhen, erkennbar auch an dem großen Si-O-C1-Winkel von 124.4°. Dies führt zu einer stärkeren Rückbindung in die leeren d-Orbitale der Silicium-Atome, was sich in den relativ kurzen SiO-Bindungen von 164.1(4) pm widerspiegelt, vergleichbar mit der SiO-Bindung von 164.6(1) pm in 5-Methylamin-(4,5-Diethyl-2,5-dihydro-2,2,3-trimethyl-1,2,5-oxasilaborol)³¹ sowie indem kleinen O1-Si-C4-Winkel von 101.4(2)°.

Die Bor-Atome gleichen ihr Elektronendefizit in weit höherem Maße durch Rückbindung in den O2B-Bindungen aus, die mit 135.9 pm kürzer sind als in Triethylboroxin mit 138.4 pm (Mittelwert)^{20b)}. Die C7B-Bindungslänge von 155.6(9) pm ist mit der in Triethylboroxin (156.3 pm) vergleichbar. Auch wenn außerhalb der Signifikanzgrenzen, so sind die unterschiedlichen Rückbindungen von den Sauerstoff-Atomen der Glykol-Einheit in den OC-Bindungslängen erkennbar: Die OC-Bindung des an das Silicium-Atom gebundenen Sauerstoff-Atoms ist kürzer (142.1 pm) als die des an das Bor-Atom gebundenen Sauerstoff-Atoms (143.5 pm). Beide OC-Bindungen sind länger als im bekannten Glykol-Clathrat (138.8 pm)²¹⁾, ebenso die CC-Bindungen in den Glykoleinheiten (149.0 pm) in (15a)₂ gegenüber denen (143.9 pm) im freien Glykol²¹⁾. Dies stimmt mit den Rückbindungen zum Bor- bzw. Silicium-Atom überein. Der O1 - C1 - C2 - O2-Torsionswinkel beträgt nur 67.2° (statt 90° im Glykol-Clathrat²¹), eine Folge der transannularen Wechselwirkungen und der dadurch verursachten Verzerrung des Rings. Die C9-C3-C4-C11- und Si'-C4-C3-C9-Torsionswinkel betragen -1.3 bzw. 180.0°, woraus eine π -Wechselwirkung der C3 = C4- bzw. C3' = C4'-Bindungen (134.5 pm) mit den d-Orbitalen der Silicium-Atome Si' bzw. Si folgt. Man kann dies auch an einer Verkürzung der SiC4'- bzw. Si'C4-Bindungen erkennen, die mit 184.8(6) pm kürzer als die SiC5- bzw. SiC6-Abstände mit 186.0(8) pm sind. Eine π -Wechselwirkung zwischen den C=C-Bindungen und den Bor-Atomen ist bei einem C4-C3-B-

C7-Torsionswinkel von -90.2° auszuschließen, was den vergleichsweise langen C3B-Abstand von 159.6(8) pm begründet. Diese Betrachtungen werden durch die NMR-Daten (s.o.) gestützt. – Der B-C7-C8-Winkel des festen (15a)₂ ist im übrigen mit 117.5(5)[°] stark aufgeweitet, in Übereinstimmung mit anderen Ethylbor-Verbindungen des dreifach koordinierten Bor-Atoms²²⁾.

Experimenteller Teil

Sämtliche Experimente wurden unter Argon als Schutzgas bei striktem Ausschluß von Luft und Feuchtigkeit durchgeführt. Die Elementgehalte (C, H, B, N, Si) bestimmte man bei Dornis und Kolbe, Mülheim an der Ruhr.

Geräte: DSC: DuPont 1090. – IR: Perkin-Elmer 297. – Massenspektren²³): EI-MS (70 eV) mit Finnigan MAT CH 5 für flüssige und feste Proben. – ¹H-NMR²⁴): Bruker AC 200. – ¹¹B-NMR²⁴): Bruker AC 200 (64.2 MHz); $\delta^{11}B = 0$ für (C₂H₃)₂O-BF₃ (extern). – ¹³C-NMR²⁴): Bruker AC 200 (50.2 MHz) und WM 300 (75.4 MHz). – ²⁹Si-NMR: Bruker AC 200 (39.8 MHz) und Bruker AC 300 (59.6 MHz), refokussierte INEPT-Pulssequenz²⁵) und ¹H-Entkopplung. δ^{13} C- und δ^{29} Si-Werte sind auf externes (CH₃)₄Si bezogen (Ξ^{29} Si = 19867184 Hz). – Geräte zur Kristallstrukturanalyse^{20a}) von (15a)₂ Tab. 5.

Ausgangsverbindungen: CH₃ $NSi(CH_3)_2C(R) = C(C_2H_5)BC_2H_5$ [$R = CH_3^{21}$: A; $R = C(CH_3) = CH_2^{31}$: B], (E)-C₂H₅(CH₃O)-BC(C₂H₅) = C(CH₃)Si(CH₃)₂OCH₃ (11)³¹, 1,2-Bis(diethylboryloxy)ethan²⁶¹ und Triethylboroxin²⁷¹ stellte man nach Literaturangaben her. Bezogen wurden Ethylenglykol (1) (Ricdel-de Haën); rac-1,2-Propandiol (2) (Hüls AG); rac/meso-2,3-Butandiol (rac/meso-3), D-(-)-2,3-Butandiol [(R,R)-2,3-Butandiol] (D-3) (Fluka); 2,3-Dimethyl-2,3-butandiol (Pinakol wasserfrei) (4) (Schuchardt); 1,3-Propandiol (5), 1,4-Butandiol (6), 1,2-Bis(trimethylsilyloxy)ethan (Fluka); Brenzkatechin (7), Resorcin (8) (Bayer); 2,3-Dihydroxynaphthalin (9) und 1,8-Dihydroxynaphthalin (10) (Fluka).

Lösungsmittel und Flüssigkeiten (Pentan, Toluol, Mesitylen, Pyridin) machte man vor Gebrauch luft- und wasserfrei und bewahrte die Flüssigkeiten unter Argon als Schutzgas auf.

Reaktionen der Verbindungen A und B

a) Mit Monohydroxy-Verbindungen

3-(Ethylmethoxyboryl)-2-(methoxydimethylsilyl)-2-penten (11): Herstellung vgl. Lit.²; MS- und NMR-Daten Tab. 1-3. – Bemerkung: Mit feuchtem Methanol bildet sich außerdem 4,5-Diethyl-2,5-dihydro-2,2,3-trimethyl-1,2,5-oxasilaborol²) ($\delta^{11}B = 50.6$, $\delta^{29}Si = 26.8$).

2-(Ethoxydimethylsilyl)-3-(ethoxyethylboryl)-2-penten (12): 3.23 g (16.5 mmol) A gibt man rasch zu 1.52 g (33 mmol) Ethanol (Wärmeentwicklung). Nach ca. 20 h bei Raumtemp. sind 14.8 mmol (90%) MeNH₂ freigesetzt (aufgefangen in \mathbb{N} H₂SO₄). Beim Destillieren erhält man 3.6 g (85%) reines 12 mit Sdp. 42-46°C/0.001 Torr. - MS- und NMR-Daten Tab. 1-3.

 $\begin{array}{l} C_{13}H_{29}BO_2Si \ (256.3) \\ \mbox{Ber. } C \ 60.91 \ H \ 11.39 \ B \ 4.21 \ Si \ 10.96 \\ \mbox{Gef. } C \ 60.80 \ H \ 11.51 \ B \ 4.11 \ Si \ 11.04 \end{array}$

2-(Dimethylphenoxysilyl)-3-(ethylphenoxyboryl)-2-penten (13): Das Gemisch aus 3.23 g (16.5 mmol) A und 3.11 g (33.1 mmol) Phenol entwickelt beim 8stdg. Erhitzen auf 130-150°C 12.5 mmol (76%) MeNH₂ (aufgefangen in N H₂SO₄). Nach 1.1 g Vorlauf mit Sdp. 30-65°C/0.001 Torr [$\delta^{11}B = 48.9$ (80%), 30.3 (20% Ethyldiphenoxyboran)] destillieren 3.95 g (68%) farbloses klares 13 mit Sdp. 112-116/0.001 Torr. - MS- und NMR-Daten Tab. 1-3.

 $\begin{array}{c} C_{21}H_{29}BO_2Si \hspace{0.2cm}(352.4) \\ Ber. \hspace{0.2cm}C \hspace{0.2cm}71.57 \hspace{0.2cm} H \hspace{0.2cm}8.29 \hspace{0.2cm} B \hspace{0.2cm}3.06 \hspace{0.2cm}Si \hspace{0.2cm}7.96 \\ Gef. \hspace{0.2cm}C \hspace{0.2cm}71.68 \hspace{0.2cm} H \hspace{0.2cm}8.34 \hspace{0.2cm} B \hspace{0.2cm}3.05 \hspace{0.2cm}Si \hspace{0.2cm}8.01 \end{array}$

b) Mit Glykol (1)

(E)-3-[Ethyl(methylamino)boryl]-2-[(2-hydroxyethoxy)dimethylsilyl]-2-penten (14) aus A und 1 (1:1) bei Raumtemp.: 3.79 g (19.4 mmol) A tropft man in 1 h zu 1.20 g (19.3 mmol) Ethylenglykol (1). Unter Wärmeentwicklung bildet sich zunächst eine trübe, schließlich klare Flüssigkeit, aus der nach weiterem 30min. Rühren bei Raumtemp. 4.9 g (98%) 14 mit Schmp. $36-37^{\circ}$ C auskristallisieren (CH₃NH₂ wird nicht freigesetzt). – IR (Paraffin): $\tilde{v} =$ 3230, 3130 cm⁻¹ (OH, NH), 1585, 1545 (C=C). – NMR-Daten Tab. 2, 3, Analysendaten Tab. 7.

4,5-Diethyl-2,2,3-trimethyl-1,6-dioxa-2-sila-5-bora-3-cycloocten (15a) aus A und Ethylenglykol (1) bei >90°C: 5.4 g (28 mmol) A und 1.94 g (31 mmol) 1 werden ohne Lösungsmittel unter Rühren in ca. 4 h bis auf 150°C erhitzt, wobei ab ca. 90°C im Argon-Strom 24.3 mmol (87%) CH₃NH₂ freigesetzt werden (Vorlage mit N H₂SO₄). Die Destillation i. Vak. liefert 4.56 g (72%) farbloses, flüssiges 97.1proz. (GC) 15a mit Sdp. 43°C/0.001 Torr. – MS- und NMR-Daten Tab. 1–3, Analysendaten Tab. 7.

15a mit D-17b: Nach 4stdg. Erwärmen des äquimolaren Gemischs von 15a und D-17b auf ca. 120 °C sind keinerlei neue ¹H-NMR-Signale zu beobachten.

15a mit Triethylboroxin: Nach Mischen von 1 mol 15a ($\delta^{11}B = 50.4$) und 3.5 mol (C_2H_3BO)₃ (33.5) in Heptan bei Raumtemp. tritt cine ¹¹B-NMR-Signalschulter bei $\delta = 35$ von 1f₁ (s. u.) auf. Nach 1stdg. Erwärmen auf ca. 90°C ist die Schulter stärker ausgeprägt. Man beobachtet außerdem eine Signalschulter bei $\delta = 50.6$ von 4,5-Diethyl-2,5-dihydro-2,2,3-trimethyl-1,2,5-oxasilaborol³).

4,5,12,13-Tetraethyl-2,2,3,10,10,11-hexamethyl-1,6,9,14-tetraoxa-2,10-disila-5,13-dibora-3,11-cyclohexadecadien (**15a**)₂

a) Aus 15a: Aus unverdünntem, flüssigem 15a kristallisieren bei Raumtemp. in 1-2 d beim Stehenlassen Nadeln aus. Nach Abhebern der restlichen Flüssigkeit wäscht man die Kristalle mit kaltem (< -50°C) Pentan, trocknet i.Vak. und erhält (15a)₂ mit Schmp. 111°C. – GC von (15a)₂: 96.5proz. mit (10 m KS, E =200°C) Retentionsvol. von 15a. – MS- und NMR-Daten Tab. 1-3, Analysendaten Tab. 7, Röntgenstrukturanalyse²⁰ⁿ Abb. 2, 3 und Tab. 4-6.

Tab. 5. Kristallstrukturdaten der Verbindung (15a)₂

Summenformel $C_{22}H_{46}B_2O_4Si_2$, Molmasse 452.4, Kristalldaten: Größe 0.1 x 0.06 x 0.05 mm, System monoklin, Farbe weiß, a = 8.381(5), b = 13.903(8), c = 12.447(7)Å, $\alpha = 90$, $\beta = 110.31(4), \gamma = 90^{\circ}$, V = 1360.2(12)Å³, d = 1.10 gcm⁻³, Raumgruppe (Nr. Int. Tables) P2₁/n(14), Z = 2, Diffraktometer: Nicolet R3m/V, μ (Mo-K α) = 0.15 mm⁻¹, $\lambda = 0.71069$ Å, T = -153°C, Datensammlung ω -scan, F(000) = 492, gemessene Reflexe 2048, unabhängige 1653, beobachtete 1346 [Fo $\geq 4\sigma$ (F)], sin $\theta/\lambda_{max} = 0.53843$, verfeinerte Parameter: 172, Strukturlösung: Direkte Methode, Rechner: MicroVAX II, Programmsystem: SHELXTL-PLUS, R = 0.083, $R_w = 0.104$, max. Restelektronendichte 0.79 $e^{\text{Å}^{-3}}$

Tab. 6. Atomkoordinaten (× 104) un	d äquivale	ente isotrope	atomare
Temperaturfakt	oren (pm ²	$\times 10^{-1}$)	von $(15a)_{2}$	

Atom	x	у	z	U _{eq} *
Si 01 02 B C1 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2	-2980(2) -2078(5) -1626(4) -699(7) -2922(7) -1843(7) -317(6) 1198(7) -4786(8) -1835(8) -767(10) -3734(9) -1831(9) -1831(9)	1884(1) 938(3) -797(3) -1495(4) 51(4) -784(4) -2483(4) -2483(4) -2483(4) -1445(4) 2318(5) -3162(4) -3162(4) -3855(4)	-801(1) -1136(3) 234(3) 941(5) -1530(4) -962(4) 424(4) 375(4) 2233(5) -2058(5) 86(5) 2707(5) 404(5) 1037(5)	22(1) 26(1) 23(1) 22(2) 24(2) 24(2) 24(2) 29(2) 34(2) 30(2) 42(3) 39(2) 36(2) 36(2)

*) Äquivalente isotrope U, berechnet als ein Drittel der Spur des orthogonalen U_{ij}-Tensors.

b) Aus A und Ethylenglykol (1) in Pentan: Man rührt die Lösung aus 3.4 g (17.4 mmol) A und 1.09 g (17.6 mmol) 1 in 10 ml Pentan 7.5 h bei Raumtemp. und treibt dabei im Ar-Strom 15 mmol (86%) CH₃NH₂ aus (N H₂SO₄). Nach Entfernen des Pentans i. Vak. (12 Torr) verbleibt kristallines (15a)₂ mit Schmp. 111 °C; DSC: 118 °C (Wiedererhitzen: Schmp. 108 °C).

2-Ethyl-1,3,2-dioxaborolan (1f₁), (2-Hydroxyethoxy)dimethyl(1methyl-1-butenyl)silan (1f₂) und 1,2-Bis[dimethyl(1-methyl-1-butenyl)silyloxy]ethan (1f₃) aus 15a und 1 bei 150°C: 4.87 g (21.5 mmol) 15a und 1.33 g (21.4 mmol) 1 rührt man 4.5 h bei 150°C. Von 5.65 g Gemisch [83% Umsatz: $\delta^{11}B = 34.9$ (83%) von 1f₁, 50.8 (17%) von 15a] werden nahezu reines 1.33 g (75%) 1f₁ ($\delta^{11}B = 34.9$) mit Sdp. 20°C/0.001 Torr [¹H-NMR (CDCl₃): $\delta^{1}H = 4.09$ (OCH₂), 0.8, 0.66 (BC₂H₅)] und 1.90 g farbloses, klares 1f₂ mit Sdp. 27-29°C/0.001 Torr abdestilliert, IR (Nujol) 3350 cm⁻¹ (OH), 1612 (C=C). – Au-Berdem erhält man 1.51 g 1f₃ (¹H-NMR) mit Sdp. 62°C/0.001 Torr (Bad: <150°C) und 0.68 g hochzähen Rückstand. – MS- und NMR-Daten von 1f₂ und 1f₃ Tab. 1-3.

2-Methylamin – 2-Ethyl-1,3,2-dioxaborolan (MA-1f₁) und 1f₃ aus A und 1 im Überschuß: 1.31 g (6.65 mmol) A tropft man bei Raumtemp., weitere 1.30 g (6.65 mmol) A bei ca. 70°C zu 3.15 g (50.7 mmol) 1. In 4 h entstehen bei 70–150°C 6.1 mmol (46% bez. auf A) CH₃NH₂ (aufgefangen in N H₂SO₄). Während des Erhitzens sublimieren in den Kühler 0.83 g (6.3 mmol) farbloses, kristallines MA-1f₁ mit Schmp. 95–97°C. – IR (Nujol): $\tilde{v} = 1625$ cm⁻¹ (NH₂). – ¹H-NMR (C₆D₆): $\delta = 3.57$ (4 H), 2.11 (3 H), 1.06 (2 H), 0.89 und 0.76 (5 H). – ¹¹B-NMR (C₆D₆): $\delta = 34.0$ ($h_{1/2} = 60$ Hz). – ¹³C-NMR (C₆D₆): $\delta = 65.2$ (CH₂O), 28.4 (CH₃N), 8.3 (CH₃CH₂B), \approx 4 (br, CH₂B).

 $C_5H_{14}BNO_2$ (131.0) Ber. C 45.88 H 10.76 B 8.24 N 10.69 Gef. C 45.88 H 10.81 B 8.32 N 10.74

Die Destillation des Rückstands liefert nicht umgesetztes 1 mit Sdp. 25-35 °C/0.001 Torr und 0.33 g (≈ 0.1 mmol) farbloses, klares 1f₃ mit Sdp. 72-74 °C/0.001 Torr.

MA-1 f_1 aus 1 f_1 und CH_3NH_2 (MA): Man leitet in die farblose Lösung von 1 f_1 in Hexan CH_3NH_2 ein, wobei sofort weißes MA-1 f_1 ausfällt. Nach Filtrieren, Waschen mit Hexan und Trocknen i. Vak. erhält man quantitativ weißes, pulvriges MA-1 f_1 mit Schmp.

Ausgangsverbindungen Bedingungen				ungen		Hergestellte Verbindung									
C ₂ C Nr	SiNB– yclus g (mmol)	Dihy Verb Nr. (m	droxy- indung g umol)	Aminabsp °C (h)	altung ^{a)} mmol CH ₃ NH ₂ (%)	Nr.	Aus- beute g (%)	Sdp.(*C/ 0.001 Torr) [F*C]	GC (Fl-%)	Summen- Be formel Ge (Molmasse)	r. C f. C	H H	B B	N N	Si Si
A	3.79 (19.4)	1	1.20 (19.3)	20 (0.5)	0	14	4.9 (98)	[33]	-	C ₁₂ H ₂₈ BNO ₂ Si (257.3)	56.01 56.18	10.96 10.70	4.20 4.28	5.44 5.32	10.91 11.10
A	5.4 (28)	1	1.94 (31)	90-150 (4)	24.3 (87)	15a	4.56 (72)	43	-	C ₁₁ H ₂₃ BO ₂ Si (226.2)	58.40 58.65	10.26 10.35	4.77 4.56	-	12.42 12.38
A	3.4 (17.4)	1	1.09 ^{c)} (17.6)	20 (7.5)	15 (86)	(15a) ₂	-	[111]	-	$C_{22}H_{46}B_2O_4Si_2$ (452.4)	58.40 58.59	10.26 10.40	4.77 4.58	-	12.42 12.60
B	7.62 (34.4)	1	2.10 (34.4)	130–140 (65)	29.6 (86)	15b	5.7 (65)	58	_	C ₁₃ H ₂₅ BO ₂ Si (252.2)	61.90 61 .71	9.99 10.14	4.28 4.39	-	11.14 11.01
A	6.71 (34)	2	2.60 (34)	20–140 (5)	28 (82)	16/16' (2:1)	6.83 (82)	54	67.4 32.6	C ₁₂ H ₂₅ BO ₂ Si (240.2)	59.99 59.86	10.49 10.50	4.50 4.55	- -	11.70 11.59
A	5.53 (28)	m/r-3	2.51 (28)	60-130 (10)	23.7 (85)	<i>m/r-</i> 17a (1:1)	6.14 (86)	55	54.5 45.5	C ₁₃ H ₂₇ BO ₂ Si (254.3)	61.38 61.58	10.70 10.86	4.25 4.32	- -	11.05 10.95
A	5.07 (26)	D-3	2.32 (25.7)	<130 (6)	20.4 (79)	D-17a	4.33 (66)	52	90.2	C ₁₃ H ₂₇ BO ₂ Si (254.3)	61.38 61.34	10.70 10.66	4.25 4.14	-	11.05 10.83
B	10.23 (46)	D-3	4.17 (46)	70–150 (9)	37.1 (81)	D17b	8.1 (64)	56	-	C ₁₅ H ₂₉ BO ₂ Si (280.3)	64.29	10.42	3.85	-	10.02
A	6.0 (31)	4	3.60 (31)	120–160 ^{b)} (12)	21.1 (69)	18	4.6 (53)	60	94.0	C ₁₅ H ₃₁ BO ₂ Si (282.3)	63.83 63.66	11.05 11.08	3.83 3.86	-	9.95 9.84
A	4.97 (26)	5	1.98 (26)	25-140 (14)	18.4 (72)	19	4.17 (67)	58		C ₁₂ H ₂₅ BO ₂ Si (240.2)	59.99 60.28	10.49 10.64	4.50 4.21	-	11.70 11.39
A	4.59 (23.5)	6	2.10 (23.5)	70–130 (7)	21.1 (91)	(20) _n	1.1	50	-	(C ₁₃ H ₂₇ BO ₂ Si) _n (254.2) _n	61.42 59.78	10.70 10.75	4.25 4.10	-	11.04 11.52

Tab. 7. Herstellung der Heterocyclen aus A bzw. B mit Dihydroxyalkanen ohne Lösungsmittel (m/r = meso/rac)

^{a)} Aminentwicklung im Temperaturbereich von bis °C. - ^{b)} Keine Wärmeentwicklung beim Vereinigen der Reaktanden. - ^{c)} +10 ml Pentan.

95-97 °C (DSC: 87.5 °C) und Subl.-P. <20 °C/0.001 Torr. – MS (70 cV): m/z (%) = 100 (65), 99 (44), 98 (8), 85 (8), 72 (Basismasse), 70 (65), 69 (47), 56 (39). – ¹H-NMR ([D₈]THF): δ^{1} H = 4.02 (4H), 2.31 (3H), 1.86 (br, 2H), 0.90 (3H), 0.67 (2H). – ¹¹B-NMR (THF): δ = 31.9.

4.5-Diethyl-3-isopropenyl-2.2-dimethyl-1.6-dioxa-2-sila-5-bora-3cycloocten (15b) aus B und Ethylenglykol (1): 7.62 g (34.4 mmol) B tropft man in 15 min zu 2.10 g (34.4 mmol) 1 (Wärmeentwicklung) und erhitzt, wobei sich ab 50°C langsam CH₃NH₂ entwickelt. Nach 6.5stdg. Rühren bei 130–140°C sind 29.6 mmol (86%) CH₃NH₂ freigesetzt. Man erhält i. Vak. neben 1 g farblosem, viskosem Rückstand [¹H-NMR: δ = 3.55, 5.7 (t)] 5.66 g (65%) farbloses, dünnflüssiges 15b mit Sdp. 58°C/0.001 Torr. – IR (Paraffin): \tilde{v} = 1620, 1560 (C=C) cm⁻¹. – MS- und NMR-Daten Tab. 1–3, Analysendaten Tab. 7.

Gef. Molmasse (kryoskop. in Benzol) 231 (Ber. 252)

15b mit meso/rac-17a: Nach 6stdg. Erhitzen des Gemischs aus (GC) 42% 15b, 29% meso-17a und 29% rac-17a auf 120°C bleibt das ¹H-NMR-Spektrum unverändert.

c) Mit den methylierten Glykol-Verbindungen 2-4

rac-4,5-Diethyl-2,2,3,7-tetramethyl-1,6-dioxa-2-sila-5-bora-3-cycloocten (16) und rac-4,5-Diethyl-2,2,3,8-tetramethyl-1,6-dioxa-2sila-5-bora-3-cycloocten (16') im Verhältnis $\approx 2:1$ aus A und rac-1,2-Propandiol (2): Herstellung und Analysenwerte Tab. 7, MS- und NMR-Daten Tab. 1–3.

meso/rac-4,5-Diethyl-2,2,3,7,8-pentamethyl-1,6-dioxa-2-sila-5bora-3-cyclooctene (meso/rac-17a = 1:1) aus A und meso/rac-2,3-Butandiol (meso/rac-3 $\approx 1:1$): Herstellung und Analysenwerte Tab. 7, MS- und NMR-Daten Tab. 1-3. meso/rac-17 a mit meso/rac-3: Man erhitzt 0.3 mol meso/rac-17 a $(\delta^{11}B = 50 \text{ und } 41 \approx 1:1) \text{ und } 0.3 \text{ ml meso/rac-3} 3 \text{ h auf ca.}$ 150 °C. – ¹H-NMR: δ¹H = 5.58. – ¹¹B-NMR: δ¹¹B = 34.2 (73% 3f₁) und 12.1 (27% nicht identifiziertes Borat).

D-(+)-4,5-Diethyl-2,2,3,7,8-pentamethyl-1,6-dioxa-2-sila-5-bora-3-cycloocten (D-17a) aus A und D-(-)-2,3-Butandiol [(R,R)-2,3-Butandiol] (D-3): Herstellung und Analysenwerte Tab. 7. $[\alpha]_D^{20}$ (THF, c = 0.93) +15.5. – MS- und NMR-Daten Tab. 1–3.

D-(+)-4,5-Diethyl-3-isopropenyl-2,2,7,8-tetramethyl-1,6-dioxa-2-sila-5-bora-3-cycloocten bzw. -bicyclo[3.3.0]oct-3-en (D-17b) aus A und D-3, Nachweis von 3f₁ und 3bf₃: Herstellung und Analysendaten von D-17b vgl. Tab. 7, MS- und NMR-Daten Tab. 1-3. -1.14 g viskoser Rückstand enthalten 54% 3f₁ ($\delta^{11}B = 31.2$) und 3bf₃ [$\delta^{1}H^{5} = 5.79$ (t)].

4,5-Diethyl-2,2,3,7,7,8,8-heptamethyl-1,6-dioxa-2-sila-5-bora-3-cycloocten (18) aus A und 2,3-Dimethyl-2,3-butandiol (4): Herstellung und Analysendaten Tab. 7, MS- und NMR-Daten Tab. 1-3.

d) Mit den 1, ω -Dihydroxyalkanen 5 und 6

4.5-Diethyl-2,2,3-trimethyl-1,6-dioxa-2-sila-5-bora-3-cyclononen (19) aus A und 1,3-Propandiol (5): Herstellung und Analysendaten Tab. 7, MS- und NMR-Daten Tab. 1-3.

Oligomere 4,5-Diethyl-2,2,3-trimethyl-1,6-dioxa-2-sila-5-bora-3cylodecene (20)_n: 4.59 g (23.5 mmol) A und 2.10 g (23.5 mmol) 1,4-Butandiol (6) werden zusammen erhitzt. Ab ca. 50 °C spaltet sich langsam, bei 70-100 °C zügig Amin ab. Nach 7 h (Bad max. 130 °C) sind 21.1 mmol (91%) CH₃NH₂ aufgefangen (N H₂SO₄). Ca. 6 g hochzähes, farbloses Rohprodukt enthalten ca. 11% 20 und 89% (20)_n $[n \ge 2; {}^{1}H(H^{2},H^{x})$ - und ${}^{11}B$ -NMR vgl. Tab. 2, 3]. Beim Destillieren erhält man 1.10 g 20 mit Sdp. 50°C/0.001 Torr neben hochzähem (20)_n als Rückstand [${}^{1}H$ -NMR s. Abb. 1; ${}^{11}B$ -NMR: vgl. Tab. 2, 3; 20: 2 CH₂O-Signale ($\delta^{1}H = 3.91; 3.62$) (vgl. 15a); (20)_n mit $n \ge 2$: 1 CH₂O-Signal [$\delta^{1}H = 3.58;$ vgl. (15a)₂, $\delta^{11}B = 47$ (sbr), $\delta^{29}Si (-30^{\circ}C) = 10.7; 10.2; 9.8$]. – Nach Aufnehmen von (20)_n in CDCl₃ bildet sich bei Raumtemp. langsam 20 (${}^{1}H$ -NMR Abb. 1; ${}^{11}B$ -NMR). – Analysendaten von (20)_n Tab. 7.

e) Mit den Dihydroxyarenen 7-10

A und Brenzcatechin (7) (1:1) bei Raumtemp. in Toluol: 2-Methylamin – 2-Ethyl-1,3,2-benzodioxaborol (MA-7f₁), Nachweis isomerer Bis/dimethyl-2(3)-penten-2(3)-ylsilyloxy Jbenzole (7f₃/7f₃) von 4,5-Diethyl-2,5-dihydro-2,2,3-trimethyl-1,6-dioxa-2-sila-5-borabenzocycloocten (21) und MA-21: 5.0 g (25.6 mmol) A tropft man bei Raumtemp. in 10 min zu 2.82 g (25.6 mmol) 7 in 40 ml Toluol (Temperaturanstieg bis 34°C). Die zunächst weiße Suspension bildet eine klare Lösung, aus der langsam ein feiner Niederschlag ausfällt. Nach 14stdg. Rühren bei Raumtemp. filtriert man von 0.65 g (3.7 mmol) MA-7f₁ mit Schmp. 180°C (DSC: 176°C) ab. – ¹H-NMR ([D₈]THF): δ = 6.45 (4H), 5.03 (2H), 2.25 (3H), 0.47 (2H), 0.81 (3H). – ¹¹B-NMR ([D₈]THF): δ = 11 ($h_{1/2}$ = 120 Hz). – ¹³C-NMR ([D₈]THF): δ = 154.2, 118.4, 109.2 (Ar); 25.7 (NCH₃); 11, 8.4 (BC₂H₃).

 $\begin{array}{l} C_9H_{14}BNO_2 \ (179.0) \\ Ber. \ C \ 60.39 \ H \ 7.88 \ B \ 6.03 \ N \ 7.82 \\ Gef. \ C \ 60.10 \ H \ 8.17 \ B \ 6.01 \ N \ 7.87 \end{array}$

Nach Einengen des Filtrats verbleiben 6.83 g gelblicher, matschiger Rückstand mit 20% **21** ($\delta^{11}B = 51.1$), 15% MA-**21** (14.0) und 65% nicht identifiziertes Borat (4.5).

Die Destillation des Rückstands liefert (Bad 20-35 °C; 0.001 Torr): a) 2.93 g 94.1proz. (GC) **21** mit Sdp. 70-76 °C/0.001 Torr und 0.54 g farblos klares Gemisch [aus (GC) 20.1% **21**, 61.0 und 18.9% 7f₃ bzw. 7f₃] mit Sdp. 82-84 °C/0.001 Torr. – b) Sehr wenig matschiges Sublimat mit 53% **21** ($\delta^{11}B = 51.1$), 29% MA-**21** (14.2) und 18% Borat (4.6). – MS- und NMR-Daten von **21** Tab. 1–3.

C₁₅H₂₃BO₂Si (274.2) Ber. C 65.69 H 8.45 B 3.94 Si 10.24 Gef. C 64.89 H 8.71 B 3.79 Si 10.44

5-Methylamin – 4,5-Diethyl-2,5-dihydro-2,2,3-trimethyl-1,6-dioxa-2-sila-5-borabenzocycloocten (MA-21) aus A und 7 (1:1) bei Raumtemp.: 4.54 g (23 mmol) A tropft man bei Raumtemp. in 30 min zur Lösung von 2.56 g (23 mmol) 7 in 30 ml Toluol (Temperaturanstieg auf 31 °C). Die Suspension rührt man 1.5 h bei Raumtemp. (keine CH₃NH₂-Entwicklung), entfernt das Lösungsmittel bei 0.001 Torr und erhält 6.3 g (90%) weißes, festes MA-21 mit Schmp. 86–90 °C. – IR (Paraffin): $\tilde{v} = 3320, 3220 \text{ cm}^{-1}$ mit Schulter bei 3195, 3155 (NH). – NMR-Daten Tab. 2 und 3.

2-Pyridin–2-Ethyl-1,3,2-benzodioxaborol (Py-7f₁) aus A und 7 nach Erhitzen auf ≤ 150°C: Das unter Wärmeentwicklung hergestellte Gemisch aus 3.78 g (19.2 mmol) A und 2.12 g (19.2 mmol) 7 in 20 ml Mesitylen wird 3.5 h auf 100–150°C erhitzt. 15.6 mmol (81%) CH₃NH₂ werden frei (N H₂SO₄). Man filtriert von 0.1 g Feststoff (Schmp. > 250°C) ab und erhält nach Abdestillieren leichtflüchtiger Bestandteile (s.u.) bei 0.001 Torr/Bad ≤ 30°C 1.89 g (36%) farbloses, klares Gemisch (Sdp. 78–81°C/0.001 Torr) aus (GC/MS) 86.1% **21** (Molmasse 274), 10.2 und 3.8% **7f₃/7f₃** (Molmasse 362); NMR-Daten von **7f₃** und **7f₃** Tab. 2 und 3. – Zu den leichtflüchtigen Verbindungen gibt man ca. 3 ml Pyridin (spontane Gelbfärbung), rührt ca. 1 h bei Raumtemp., engt bei 0.001 Torr ein und erhält beim Sublimieren bei 0.001 Torr/Bad <35 °C wenig kristallines Py-7f₁ mit Schmp. 102 °C. – MS (70 eV): m/z = 148 (B₁, 66% rel. Int.), 120 (Basismasse), 79 (Py). – ¹H-NMR (200 MHz, CD₂Cl₂): $\delta = 8.72$ (2H), 7.95 (1H), 7.56 (2H), 6.76 (4H), 0.86 (5H). – ¹¹B-NMR (64.2 MHz, CD₂Cl₂): $\delta = 17.3$ ($h_{1/2} = 105$ Hz). – ¹³C-NMR (50.3 MHz, CD₂Cl₂): $\delta = 151.7$ (s); 144.3, 141.2, 125.7 (d); 119.5, 110.3 (d), 13 (br), 8.4 (BC₂H₅).

 $\begin{array}{l} C_{13}H_{14}BNO_2 \ (227.1) \\ Ber. \ C \ 68.75 \ H \ 6.21 \ B \ 4.76 \ N \ 6.16 \\ Gef. \ C \ 70.07 \ H \ 6.40 \ B \ 4.81 \ N \ 6.15 \end{array}$

A und Resorcin (8) (1:1) bei $\leq 150^{\circ}C$ in Mesitylen

Erhitzen äquimolarer Mengen A und 8: In 25 ml Mesitylen vereinigt man 5.37 g (27.5 mmol) A mit 3.03 g (27.5 mmol) 8 und erhitzt 24 h bis max. 150 °C, wobei 23.9 mmol (87%) CH₃NH₂ freigesetzt werden. Nach Entfernen des Lösungsmittels bei 0.001 Torr erhält man 4.7 g gelbliches, hochviskoses Produktgemisch. – MS: m/z =519 [B₂, Basispeak, (M – 29)⁺ von (22)₂] und 667 (B₃). – ¹¹B-NMR (CD₂Cl₂): $\delta = 27.7$ (66%) und 45.7 (34%). – ¹³C-NMR (CD₂Cl₂): $\delta = -1.1$ (C²), 139.4 (C³), 16.3 (C³), nicht beobachtet (C⁴), 25.4 (C⁴), 13.1 (C⁴), 18.1 (C⁵), 9.9 (C⁵); 162.6 und 135 – 130 (C_{ar}). – ²⁹Si-NMR (CDCl₃): $\delta = 8.2$.

> (C₁₅H₂₃BO₂Si)_n (274.2)_n Ber. C 65.70 H 8.46 B 3.94 Si 10.24 Gef. C 65.45 H 8.62 B 3.75 Si 10.15

A mit 2,3-Dihydroxynaphthalin (9)

a) Bei Raumtemperatur in Mesitylen

3-Methylamin-2-Ethylnaphtho[2,3-d]-1,2,3-dioxaborol (MA-9f₁) und 4,5-Diethyl-2,5-dihydro-2,2,3-trimethyl-1,6-dioxa-2-sila-5boracycloocta[b]naphthalin (23) aus A und 9 bei ca. 20°C: Nach raschem Vereinigen von 2.9 g (14.9 mmol) A mit 2.38 g (14.9 mmol) 9 in 35 ml Mesitylen wird Wärme frei. Aus der klaren Lösung fällt feinverteiltes Produkt aus. Man rührt ca. 3 h bei Raumtemp., entfernt das Lösungsmittel bei 0.001 Torr/Bad < 30°C und erhält 4.93 g Flüssig/Fest-Gemisch, das ¹¹B-NMR-spektroskopisch (gemessen in [D₈]THF) aus ca. 60% 23 ($\delta^{11}B = 50.9$), 20% MA-9f₁ $(\delta^{11}B = 11.2)$ und 20% Borat ($\delta^{11}B = 5.1$) zusammengesetzt ist. Nach Aufnehmen in Pentan lassen sich 0.65 g (19%) MA-9f1 mit Schmp. 214 °C (Zers.) abfiltrieren. – MS von MA-9f₁: m/z = 198 $(M^+ - CH_3NH_2, Basismasse)$, 170 (31%). – ¹H-NMR (200 MHz, $[D_8]$ THF): $\delta = 7.4$ (2 H), 7.0 (2 H), 6.73 (2 H), 5.20 (2 H), 2.22 (3 H), 0.80 (3 H) und 0.47 (2 H). - ¹¹B-NMR (64.2 MHz, [D₈]THF): $\delta =$ 11.2 ($h_{1/2} = 150$ Hz). $- {}^{13}$ C-NMR (50.3 MHz, [D₈]THF): $\delta =$ 155.4 (C^{2,3}), 131.2 (C^{5,10}), 126.5, 122.6 (C⁶⁻⁹), 103.6 (C^{1,4}), 25.7 (NCH₃), 11 (br), 8.2 (BC₂H₅).

b) In Mesitylen bei ca. $150^{\circ}C$

2-Ethylnaphto[2,3-d]-1,3,2-dioxaborol (9f₁), isomere 2,3-Bis-[dimethyl-2(3)-penten-2(3)-ylsilyloxy]napthaline (isomere 9f₃/9f₃) und Nachweis von 23 aus A und 9 in heißem Mesitylen: Man erhitzt je 16.1 mmol A (3.14 g) und 9 (2.58 g) in 35 ml Mesitylen auf 80-150 °C und erhält nach ca. 10 h 11.4 mmol (71%) CH₃NH₂. Nach Einengen i. Vak. und Aufnehmen von 4.93 g wachsartigem Rückstand (¹H-NMR: $\delta = 6.27$, 6.14 im Verhältnis 1:3) mit ca. 70% 9f₁ ($\delta^{11}B = 36.8$) und ca. 30% 23 ($\delta^{11}B = 51.5$) in Pentan erhält man beim Abkühlen auf -60 °C reines 9f₁ mit Schmp. 86 °C. – MS (70 eV): m/z (%) = 198 (M⁺, Basismasse), 183 (8), 170 (31), 153 (7), 114 (8). – ¹H-NMR (200 MHz, CD₂Cl₂): $\delta = 7.87$ (2H), 7.57 (2H), 7.48 (2H), 1.35 (5H). – ¹¹B-NMR (64.2 MHz, CD₂Cl₂): $\delta = 36.8$ ($h_{1/2} = 300$ Hz). – ¹³C-NMR (50.3 MHz, CD_2Cl_2 : $\delta = 148.5 (C^{2,3}), 130.8 (C^{5,10}), 128.0, 125.1 (C^{6-9}), 108.4$ $(C^{1,4})$, 14 (br), 7.6 (BC₂H₅).

$$\begin{array}{c} C_{12}H_{11}BO_2 \ (198.0) \\ \text{Gef. C } 72.78 \ \text{H} \ 5.61 \ \text{B} \ 5.45 \\ \text{Gef. C } 73.50 \ \text{H} \ 5.75 \ \text{B} \ 5.40 \end{array}$$

Nach Einengen der Mutterlauge bei 0.001 Torr erhält man einen gelblichen, viskosen Rückstand mit (GC/MS) 4.9% 9f₁ [m/z 198] (M^+)], 3.7% (E)-C₂H₅CH = C(CH₃)Si(CH₃)₂]₂O [m/z (%) = 270 $(M^+, <1)$, 216 (Basismasse), 201 (33), 186 (24)], 25.9% 23 [m/z $(\%) = 295 (M - 29, Basismasse), 73 (48)] und 65.5\% isomeren 9f_3/$ **9f**'₃ (36.2%, 24.5%, 4.8%) $[m/z = 412 (M^+)]$. $-^{11}$ B-NMR: $\delta =$ 35.1 (13% 9f₁) und 51.4 (87% 23).

2-Ethylnaphtho[1,8-de]-1,3,2-dioxaborinin (10f1), 8-[Dimethyl(1methyl-1-butenyl)silyloxy]-1-naphthalinol (10f₂) und Nachweis von 24 aus A und 1,8-Dihydroxynaphthalin (10): Nach Vereinigen von 1.35 g (6.9 mmol) A und 1.13 g (6.9 mmol) 10 in 30 ml Mesitylen erhitzt man 4 h auf 105-115°C, wobei 5.7 mmol (84%) MeNH₂ frei werden (aufgefangen in N Säure). Nach Entfernen des Mesitylens bei 0.001 Torr/Bad ≤ 40 °C verbleiben 2 g viskoser, schwach gelber Rückstand mit (GC/MS) 12% $10f_1 [M^+ m/z = 198]$, 13% $10f_2$ $[M^+ 286]$ und 75% 24 $[(M - 13)^+ 309]$. - ¹¹B-NMR (CD₂Cl₂): 86% 24 ($\delta = 20.3$) und 14% 10 f₁ (32.9). Die Destillation des Rückstands liefert nach wenig weißem Sublimat (1H- und 11B-NMR: 10f1) 1.32 g farbloses, klares Destillat mit Sdp. 96-100°C/0.001 Torr; ¹¹B-NMR: 79% 24 ($\delta = 20.4$) und 21% 10 f₁ (32.9). – MS- und NMR-Daten von 24 und $10f_2$ Tab. 1-3.

10 f_1 : MS: m/z (%) = 198 (M⁺, Basispeak), 183 (14), 170 (70), 114 (15), 85 (13). $- {}^{1}$ H-NMR (CD₂Cl₂): $\delta = 7.36$ und 6.84 (6H), 1.10 (5 H). $-{}^{11}$ B-NMR (CD₂Cl₂): $\delta = 33.0 (h_{1/2} = 195$ Hz).

CAS-Registry-Nummern

1: 107-21-1 / 2: 57-55-6 / meso-3: 5341-95-7 / rac-3: 6982-25-8 D-3: 24347-58-8 / 4: 76-09-5 / 5: 504-63-2 / 6: 110-63-4 / 7: 120-80-9 / 8: 108-46-3 / 9: 92-44-4 / 10: 569-42-6 / 11: 111869-86-4 / 12: 125451-94-7 / 13: 125451-95-8 / 14: 125451-96-9 / 15a: 125451-97-0 / (15a)2: 125474-83-1 / 15b: 125474-84-2 / 16: 125451-98-1 16': 125452-08-6 / meso-17a: 125451-99-2 / rac-17a: 125452-07-5 D-17a: 125515-84-6 / D-17b: 125452-09-7 / 18: 125452-00-8 / 19: D-17a: 125515-84-6 / D-17b: 125452-09-7 / 18: 125452-00-8 / 19: 125474-81-9 / 20: 125452-01-9 / 21: 125452-02-0 / MA-21: 125452-24-6 / (22)₂: 125474-82-0 / 23: 125452-03-1 / 24: 125452-04-2 / 1f₁: 10173-38-3 / MA-1f₁: 125452-22-4 / 1f₂: 125452-05-3 / 1f₃: 125452-06-4 / 3f₁: 57633-64-4 / 3f₂: 125452-10-0 / 3f₃: 125452-05-3 / 1f₃: 125452-125452-12-2 / MA-7f₁: 125452-23-5 / Py-7f₁: 125452-25-7 / 7f₃: 125452-13-3 / 7f'₃: 125452-14-4 / 9f₁: 125452-15-5 / MA-9f₁: 125452-26-8 / 9f₃: 125452-16-6 / 9f'₃: 125452-17-7 / 10f₁: 125452-9 / 10f₃: 125452-20-2 / 10f₃: 125452-13-3 / A: 79483-05-9 / B: 19-9 / 10f2: 125452-20-2 / 10f3: 125452-21-3 / A: 79483-05-9 / B: $\begin{array}{l} 1253 \\ 81620-70-4 \ / \ [(E)-C_2H_5CH = C(CH_3)Si(CH_3)_2]_2O: \ 125452-18-8 \ / \\ Triethylboroxin: \ 3043-60-5 \ / \ 4,5-Diethyl-2,5-dihydro-2,2,3-tri- \\ \end{array}$ methyl-1,2,5-oxasilaborol: 88636-30-0

- ³⁾ R. Köster, G. Seidel, R. Boese, B. Wrackmeyer, Chem. Ber. 121 (1988) 597, dort S. 601, 613. ⁴⁾ K. M. Welsh, J. Y. Corey, *Organometallics* 6 (1987) 1393.
- ⁵⁾ R. Köster, G. Seidel, B. Wrackmeyer, Manuskript in Vorbereitung. ⁶⁾ R. Köster, G. Seidel, R. Boese, B. Wrackmeyer, Manuskirpt in
- Vorbereitung.
- ⁷⁾ R. Köster, G. Seidel, Manuskript in Vorbereitung.
- ⁸⁾ R. Köster, G. Seidel, B. Wrackmeyer, R. Boese, Manuskript in Vorbereitung
- ⁹⁾ P. Binger, R. Köster, Synthesis 1973, 309.
 ¹⁰⁾ B. Wrackmeyer, J. Wagner, Borchemikertreffen Goldkronach, Scptember 1989. ¹¹⁾ ^{11a}, R. Köster, G. Seidel, B. Wrackmeyer, K. Horchler, Angew.
- Chem. 101 (1989) 945; Angew. Chem. Int. Ed. Engl. 28 (1989) 918. ^{11b)} R. Köster, G. Seidel, B. Wrackmeyer, K. Horchler, Chem. Ber., im Druck.
- ¹²⁾ R. Köster, in Methoden der Organischen Chemie (Houben-Weyl-Müller), Bd. XIII/3a (R. Köster, Ed.), S. 718, Thieme, Stuttgart 1982
- ¹³⁾ B. Wrackmeyer, S. Kerschl, unveröffentlichte Ergebnisse; vgl. Dissertation S. Kerschl, Univ. Bayreuth, 1986, S. 39.
- ¹⁴⁾ H. Nöth, B. Wrackmeyer, Nuclear Magnetic Resonance Spectroscopy of Boron Compounds in NMR – Basic Principles and Progress (E. Fluck, P. Diehl, R. Kosfeld, Eds.), Bd. 14, Springer, Heidelberg 1978.
- ¹⁵⁾ B. Wrackmeyer, R. Köster, Analytik der Organobor-Verbindungen in Methoden der Organischen Chemie (Houben-Weyl-Müller), 4. Aufl., Bd. XIII/3c (R. Köster, Ed.), S. 377-611, Thieme, Stuttgart 1984.
- ¹⁶⁾ B. Wrackmeyer, Annu. Rep. NMR Spectrosc. 20 (1988) 61.

- B. Wrackmeyer, Progr. NMR Spectrosc. 12 (1979) 227.
 R. Köster, G. Seidel, B. Wrackmeyer, Chem. Ber. 122 (1989) 1825.
 H. Marsmann, ²⁹Si NMR Spectroscopic Results, in NMR Basic Principles and Progress (E. Fluck, P. Diehl, R. Kosfeld, Eds.), Bd. 17, S. 122ff., Springer, Heidelberg 1981.
- ²⁰⁾ 20a) Einzelheiten zur Kristallstrukturanalyse von (15a)₂ können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-320073, der Autorennamen und des Zeitschriftenzitats an-gefordert werden. -^{20b)} R. Boese, M. Polk, D. Bläser, Angew. Chem. 99 (1987) 239; Angew. Chem. Int. Ed. Engl. 26 (1987) 245.
- E. Weber, I. Csöregh, B. Stensland, M. Czugler, J. Am. Chem. Soc. 106 (1984) 3297.
- 22) R. Boese, Kristallstrukturanalyse des Triethylborans (unveröffentlicht) mit Winkeln BCC = $118.7(1)^{\circ}$, $118.7(1)^{\circ}$, $119.3(1)^{\circ}$ und des Triethylboroxins (vgl. Lit.^{20b}) mit Winkel BCC = $116.8(1)^{\circ}$.
- ²³⁾ MS-Daten: D. Henneberg, Max-Planck-Institut für Kohlenfor-schung, Mülheim an der Ruhr.
- ²⁴⁾ NMR-Kartei, Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr.
- ²⁵⁾ ²⁵⁹ G. A. Morris, R. Freeman, J. Am. Chem. Soc. 101 (1979) 760. ^{25b)} D. P. Burum, R. R. Ernst, J. Magn. Reson. 39 (1980)
- ^{100, -} ^{25c)} G. A. Morris, *J. Magn. Reson.* 41 (1980) 185. ²⁶⁾ ^{26a)} R. Köster, K.-L. Amen, H. Bellut, W. Fenzl, *Angew. Chem.* 83 (1971) 805; Angew. Chem. Int. Ed. Engl. 10 (1971) 748. – ^{26b} R. Köster, W. Fenzl, G. Seidel, Liebigs Ann. Chem. 1975, 352.
- ²⁷⁾ R. Köster, W. V. Dahlhoff, J. Serwatowski, G. Seidel, Organomet. Synth. 4 (1988) 433.

[388/89]

¹⁾ 93. Mitteilung über Borverbindungen; 92. Mitteilung: M. Yalpani, R. Boese, R. Köster, Chem. Ber. 123 (1990) 707.

²⁾ R. Köster, G. Seidel, R. Boese, B. Wrackmeyer, Chem. Ber. 120 (1987) 669.